06-Feb-2020 - Argonne National Laboratory

Finding the source of chemical reactions

Scientists are constantly searching for the source of things like the origin of the universe, matter or life. Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory, in a collaboration with the Massachusetts Institute of Technology (MIT) and several other universities, have demonstrated a way to experimentally detect the most hidden aspect of all chemical reactions - the extremely short-lived transition state that occurs at their initiation. This pivotal discovery could become instrumental in gaining the ability to predict and externally control the outcomes of chemical processes.

"The transition state is key in all of chemistry because it controls the products of molecular reactions," said Kirill Prozument, lead author and chemist in Argonne's Chemical Sciences and Engineering division. Armed with more complete knowledge of certain chemical reactions starting from the transition state, researchers might be able to improve industrial processes involving production of enormous quantities of a chemical -- saving tremendous amounts of energy and money, as well as reducing waste. The same principle might also find application in the synthesis of new, life-saving drugs.

The life of this transition phase is brief, as short as quadrillionths of a second. The problem has been that it has not been possible to experimentally observe the structure of this fleeting state or even to extract sufficient details about it indirectly from the chemical products created by it, until now.

"Physicists cannot directly observe the Big Bang, which happened almost 14 billion years ago, or the transition state that led to the formation of our universe," explained Prozument. "But they can measure various messengers remaining from the Big Bang, such as the current distribution of matter, and thereby uncover many things about the origin and evolution of our universe. A similar principle holds for chemists studying reactions."

Central to this achievement is the team's experimental technique, chirped-pulse millimeter-wave spectroscopy, which allows characterization of multiple competing transition states on the basis of the vibrationally excited molecules that result in the immediate aftermath of a reaction. This technique is unrivalled in its precision at determining molecular structure and resolving transitions that originate from different vibrational energy levels of the product molecules.

Many hands contributed to the refinement of this experimental technique to expand its scope from the microwave to millimeter region, including Prozument and Robert Field, the Robert T. Haslam and Bradley Dewey Professor of Chemistry at MIT and the senior author on the study.

With this powerful technique, the team analyzed the reaction between vinyl cyanide and ultraviolet light produced by a special laser, which forms various products containing hydrogen, carbon and nitrogen. They were able to measure the vibrational energies associated with the newly formed product molecules and the fractions of molecules in various vibrational levels. The former indicates the amplitudes of which atoms within a molecule move relative to each other. The latter provides information about the geometry of groups of atoms at the transition state as they are giving birth to a product molecule -- in this case, the extent of bending excitation in the bond angle between the hydrogen, carbon and nitrogen atoms. Based upon their measurements, the team identified two transition states that govern different pathways by which the molecule hydrogen cyanide (HCN) springs to life from the reaction.

"Our work demonstrates that the experimental technique works in principle," Prozument says. "The next step will be to apply it to more complex reactions and different molecules." The team's work could thus one day have a major impact on the field of chemistry.

Facts, background information, dossiers
  • Argonne National Laboratory
  • transition states
  • chemical reactions
  • chirped-pulse milli…
More about Argonne National Laboratory
  • News

    Less than a nanometer thick, stronger and more versatile than steel

    Scientists create stable nanosheets containing boron and hydrogen atoms with potential applications in nanoelectronics and quantum information technology. What's thinner than thin? One answer is two-dimensional materials -- exotic materials of science with length and width but only one or t ... more

    Inside the battery in 3D

    Despite worldwide use of lithium batteries, the exact dynamics of their operation has remained elusive. X-rays have proven to be a powerful tool for peering inside of these batteries to see the changes that occur in real time. Using the ultrabright X-rays of the Advanced Photon Source (APS) ... more

    Turning carbon dioxide into liquid fuel

    Catalysts speed up chemical reactions and form the backbone of many industrial processes. For example, they are essential in transforming heavy oil into gasoline or jet fuel. Today, catalysts are involved in over 80 percent of all manufactured products. A research team, led by the U.S. Depa ... more

  • Videos

    Argonne News Brief: Oleo Sponge soaks up oil spills from water

    Argonne National Laboratory researchers have invented a technology for recovering oil and refined petroleum products from bodies of water. Oleo Sponge offers several key advantages over the technologies and techniques that are currently used to combat this problem. more

More about MIT
  • News

    Physicists create tunable superconductivity in twisted graphene 'nanosandwich'

    When two sheets of graphene are stacked atop each other at just the right angle, the layered structure morphs into an unconventional superconductor, allowing electric currents to pass through without resistance or wasted energy. This "magic-angle" transformation in bilayer graphene was obse ... more

    New electrode design may lead to more powerful batteries

    New research by engineers at MIT and elsewhere could lead to batteries that can pack more power per pound and last longer, based on the long-sought goal of using pure lithium metal as one of the battery's two electrodes, the anode. The new electrode concept comes from the laboratory of Ju L ... more

    New battery gobbles up carbon dioxide

    A new type of battery developed by researchers at MIT could be made partly from carbon dioxide captured from power plants. Rather than attempting to convert carbon dioxide to specialized chemicals using metal catalysts, which is currently highly challenging, this battery could continuously ... more

  • Videos

    Movable microplatform floating on droplets

    A new approach to microelectromechanical systems (MEMS), developed by a team of researchers at MIT, could offer a new way of making movable parts with no solid connections between the pieces, potentially eliminating a major source of wear and failure. Video: Melanie Gonick/MIT more

    Plant-to-human communication

    MIT engineers have transformed spinach plants into sensors that can detect explosives and wirelessly relay that information to a handheld device similar to a smartphone. Video: Melanie Gonick/MITInfrared/fluorescent images: Min Hao Wong more

    Particles attract across long distances

    MIT researchers have found a new kind of long-range interaction between particles, in a liquid medium, that is based entirely on their motions. Video: Melanie Gonick/MIT more