02-Jul-2020 - Max-Planck-Institut für Eisenforschung

How to design more reliable nano- and micro-electro-mechanical systems

Scientists analyse the deformation behaviour of silicon in nano/micro devices

Mobile phones, data storage for laptops, solar cells, power electronics for renewable energy, or sensors in cars are applications where silicon is the first-choice material despite that its mechanical behaviour at elevated temperature is not yet fully understood. To design efficient and reliable miniaturized devices operating safely with durability at temperatures exceeding room temperature, understanding the deformation mechanisms in silicon becomes crucial. Scientists from the University of Illinois, USA, and the Max-Planck-Institut für Eisenforschung (MPIE), Germany, present insights from sophisticated small-scale mechanical experiments explaining unexpected plastic deformation of silicon on the nanoscale.

While bulk silicon is brittle at room temperature, it becomes ductile at temperatures of about 540°C and starts to deform easily at about 800°C. The mechanical behaviour of silicon in micro- and nanoscale devices as used in the electronics and sensor industry, is quite different. “In small-scale devices silicon creeps at much lower temperatures of about 400°C depending on the stress level it experiences.”, explains Dr. Mohamed Elhebeary, formerly doctoral researcher at the University of Illinois and now at Intel Corporation. The scientists did in situ bending experiments inside a scanning electron microscope at 400°C, using silicon microbeams. Those microbeams are often included as springs in electro-mechanical sensors. “To be able to do these kind of experiments, we developed in the last years a new in situ thermomechanical lab-on-chip testing set-up. This is how we precisely measured changes in deformation and load with time.”, states Prof. Taher Saif, professor at the University of Illinois. The small size of the silicon beams and the stress achieved through bending, result in a high stress level near the surface of the beam. Transmission electron microscopy studies down to the atomic level were performed at the MPIE in the department “Structure and Nano-/Micromechanics of Materials” by Dr. Tristan Harzer, formerly doctoral researcher at the MPIE and now at JEOL Germany. These studies revealed that the nucleation of dislocations mediates the unexpected plastic deformation of the silicon beams. Thereby, dislocations start to nucleate from the surfaces at the places that experience the highest stress level while bending, and move into the bulk. “What happens when a threshold stress level is reached? We showed that at a certain stress level multiple dislocation nucleation sites appear. With time, as the dislocations spread into the bulk, irreversible deformation occurs until the stress level gets too small to move the dislocations further” states Prof. Gerhard Dehm, director at the MPIE.

The scientists showed that silicon used in nanoelectronics deforms at much lower temperatures than expected. These results are important to design reliable silicon nanodevices operating at high temperatures and stress.

  • M. Elhebeary, T. Harzer, G. Dehm, T. Saif; "Time dependent plasticity in silicon microbeams mediated by dislocation nucleation"; PNAS, 29. Juni 2020
Facts, background information, dossiers
More about MPI für Eisenforschung
  • News

    Material Scientist wins European Science Slam Championship

    Aniruddha Dutta, doctoral student at the Max-Planck-Institut für Eisenforschung (MPIE) in Düsseldorf and acting German science slam champion 2018/19, has won the European Science Slam Championship 2019/20 against his competitors from Austria, Switzerland, Sweden, Slovakia, Slovenia, the Cze ... more

    New class of catalysts for energy conversion

    “The theoretical possibilities seem almost too good to be true,” says researcher Tobias Löffler. Numerous chemical reactions relevant for the energy revolution are highly complex and result in considerable energy losses. This is the reason why energy conversion and storage systems or fuel c ... more

    Oxygen: A blessing and a curse for nanostructured alloying

    Severe plastic deformation and powder processing techniques are used to produce nanostructured materials with tailor-made compositions and without the effort of precasting. They allow the production of novel metallic nanocrystalline materials by mechanically alloying immiscible elements. Ox ... more

More about Max-Planck-Gesellschaft
  • News

    Topology Gets Magnetic: The New Wave Of Topological Magnetic Materials

    The electronic structure of nonmagnetic crystals can be classified by complete theories of band topology, reminiscent of a “topological periodic table.” However, such a classification for magnetic materials has so far been elusive, and hence very few magnetic topological materials have been ... more

    Metallic surfaces help molecular quantum switch

    The quantum dynamics of hydrogen is central to many problems in nature, being strongly influenced by the environment in which it takes place. In their contribution to PRL, members of the Lise Meitner Group at the MPSD address hydrogen transfer within a supported molecular switch, showing th ... more

    Cellular powerplant recycles waste gases

    Carbon monoxide is a very poisonous gas. Humans die within minutes when they inhale it. However, some microorganisms tolerate carbon monoxide and even use it to breathe and replicate. Knowledge about how these bacteria survive opens a window into the primeval times of the earth and the orig ... more