22-Jan-2021 - Friedrich-Schiller-Universität Jena

Teamwork in a molecule

Chemists harness synergy effect of gallium

Chemists at Friedrich Schiller University Jena have demonstrated the value of “teamwork” by successfully harnessing the interaction between two gallium atoms in a novel compound to split the particularly strong bond between fluorine and carbon. The gallium compound is also cheaper and more environmentally friendly than conventional alternatives.

Sustainable and inexpensive

“Such reactions are usually carried out using transition metals, such as nickel or iridium,” explains Prof. Robert Kretschmer, Junior Professor of Inorganic Chemistry at the University of Jena, whose work has been published in the Journal of the American Chemical Society. “However, transition metals are expensive and harmful to the environment, both when they are mined and when they are used. Therefore, we are trying to find better alternatives.” That two metals can do more than one is already known in the case of transition metals. “However, there has been hardly any research on the more sustainable main-group metals of the periodic table,” Kretschmer adds.

Hand in hand

“Our compound contains two chemically identical gallium atoms,” says Kretschmer. “In tests with a series of fluorine-containing hydrocarbon compounds, we saw that these two atoms together are capable of removing a fluorine atom. Using X-ray structure analysis, we were able to prove that one gallium atom binds the fluorine and the second binds the other part of the hydrocarbon compound.” This is the first step needed for catalysis.

“Now that this step has been achieved, we can consider how to develop this concept further,” explains Kretschmer. “It would of course be desirable if, at the end, the reaction could be continued to achieve a complete catalytic cycle.” However, this will probably involve a different metal. Kretschmer notes: “Gallium as an element was a first step here. Our goal is ultimately to harness the metal that occurs most frequently on earth: aluminium.”

Facts, background information, dossiers
More about Uni Jena
  • News

    Melting glasses from unmeltable compounds

    Chemists at the University of Jena are developing a way of melting normally unmeltable metal-organic framework compounds – so-called MOFs. This allows the melt-based production of glass components for applications in energy and environmental technology. Glasses are an indispensable part of ... more

    High-speed modulation thanks to crystal symmetry

    Nonlinear optics is of paramount importance in numerous fields of science and technology, in particular for second harmonic generation, namely the process of frequency doubling of a light beam. For instance, this process turns invisible infrared light into the visible light cursor of a lase ... more

    Producing hydrogen using less energy

    The way in which a compound inspired by nature produces hydrogen has now been described in detail for the first time by an international research team from the University of Jena and the University of Milan-Bicocca. These findings are the foundation for the energy-efficient production of hy ... more