31-May-2021 - Technische Universität Graz

It takes some heat to form ice

Findings turn previous understanding of ice formation upside down

Researchers from TU Graz in Austria and the Universities of Cambridge and Surrey succeeded to track down the first step in ice formation at a surface, revealing that additional energy is needed for water before ice can start to form.

Water freezes and turns to ice when brought in contact with a cold surface – a well-known fact. However, the exact process and its microscopic details remained elusive up to know. Anton Tamtögl from the Institute of Experimental Physics at TU Graz explains: “The first step in ice formation is called ‘nucleation’ and happens in an incredibly short length of time, a fraction of a billionth of a second, when highly mobile individual water molecules ‘find each other’ and coalesce.” Conventional microscopes are far too slow to follow the motion of water molecules and so it is impossible to use them to ‘watch’ how molecules combine on top of solid surfaces.

Findings turn previous understanding of ice formation upside down

With the help of a new experimental technique and computational simulations, Tamtögl and a group of researchers from the Universities of Cambridge and Surrey were able to track down the first step in ice formation on a graphene surface. In a paper published in Nature Communications, they made the remarkable observation that the water molecules repel each other and need to gain sufficient energy to overcome that repulsion before ice can start to form: It has to become hot, so to speak, before ice forms.Talking in the general sense, the lead author Anton Tamtögl says “repulsion between water molecules has simply not been considered during ice nucleation - this work will change all that”.

Following the ‘dance’ of water molecules

The effect was discovered with a method called Helium Spin-Echo (HeSE) – a technique developed at the Cavendish Laboratory in Cambridge and specially designed to follow the motion of atoms and molecules. The machine scatters helium from moving molecules on a surface, similar to the way radio waves scatter from vehicles in a radar speed-trap. By registering the number of scattered helium and their energy / velocity after scattering, it allows to follow the movement of atoms and molecules.

The HeSE experiments show that water molecules on a graphene surface, i.e. a single atomic layer of carbon, repel each other. The repulsion arises due to the same alignment of the molecules, perpendicular to the surface. The scenario is analogous to bringing two magnets with like-poles together: They will push themselves apart. In order for the nucleation of ice to begin, one of the two molecules must reorient itself, only then can they approach each other. Such a reorientation requires additional energy and thus represents a barrier that must be overcome for the growth of ice crystals.

Computational simulations in which the precise energy of water molecules in different configurations was mapped and the interactions between molecules near to each other were calculated, confirm the experimental findings. Moreover, simulations allow to ‘switch’ the repulsion on and off, providing thus further proof of the effect. The combination of experimental and theoretical methods allowed the international scientific team to unravel the behaviour of the water molecules. It captures for the first time, exactly how the first step of ice formation at a surface evolves and allowed them to propose a previously unknown physical mechanism.

Relevance for other fields and applications

The group further suggests the newly observed effect may occur more widely, on other surfaces. “Our findings pave the way for new strategies to control ice formation or prevent icing,” says Tamtögl, thinking, for example, of surface treatments specifically for wind power, aviation or telecommunications.

Understanding the microscopic processes at work during ice formation, is also essential to predicting the formation and melting of ice, from individual crystals to glaciers and ice sheets. The latter is crucial to our ability to quantify environmental transformation in connection with climate change and global warming.

Facts, background information, dossiers
  • ice formation
  • water
  • nucleation
  • Water molecules
More about TU Graz
  • News

    Electronic skin: multisensory hybrid material

    The “smart skin” developed by Anna Maria Coclite is very similar to human skin. It senses pressure, humidity and temperature simultaneously and produces electronic signals. More sensitive robots or more intelligent prostheses are thus conceivable. The skin is the largest sensory organ and a ... more

    Why some bubbles move faster

    An open question with great relevance for industrial production processes. Researchers at TU Graz and TU Darmstadt have now found an explanation. It is a puzzle long known among experts and very relevant in many industrial production processes: a jump discontinuity in the rise velocity of g ... more

    From Slurry to High-Purity Hydrogen

    Green hydrogen is seen as a beacon of hope in the energy and mobility revolution, but it is not yet suitable for mass production. There are several reasons for this. Hydrogen is currently produced mainly centrally from fossil raw materials. It then has to be compressed or liquefied in an ex ... more

More about University of Cambridge
  • News

    Researchers develop a membrane that stabilises lithium batteries

    For many people, battery-powered electronic devices like cell phones, laptops, and even electric vehicles, are now a necessity. However, these devices typically require charging at least once a day. Increasing the length of time between charges requires the development of batteries that can ... more

    Powering a microprocessor by photosynthesis

    Researchers have used a widespread species of blue-green algae to power a microprocessor continuously for a year - and counting - using nothing but ambient light and water. Their system has potential as a reliable and renewable way to power small devices. The system, comparable in size to a ... more

    Self-healing materials for robotics made from ‘jelly’ and salt

    Researchers have developed self-healing, biodegradable, 3D-printed materials that could be used in the development of realistic artificial hands and other soft robotics applications. The low-cost jelly-like materials, developed by researchers at the University of Cambridge, can sense strain ... more

  • Videos

    Graphene: A 2D materials revolution

    Graphene is a two-dimensional material made up of sheets of carbon atoms. With its combination of exceptional electrical, mechanical and thermal properties, graphene has the potential to revolutionise industries ranging from healthcare to electronics. more

    Where there’s muck there’s aluminium (if not brass)

    Technology developed in Cambridge at the Department of Chemical Engineering and Biotechnology lies at the heart of a commercial process that can turn toothpaste tubes and drinks pouches into both aluminium and fuel in just three minutes. The process recycles a form of packaging – plastic-al ... more

    Nanomaterials Up Close: Gum Arabic

    This alien glob is a piece of gum arabic from the hardened sap of the Acacia tree, most likely collected from a tree in Sudan. Rox Middleton, from the University of Cambridge, explains how the electron microscope has changed the way we are able to interact with objects at the nanoscale, all ... more

More about University of Surrey