07-Jul-2021 - Technische Universität Wien

The bitumen puzzle

Mix of methods provides new info

Although the history of bitumen dates back to the third millennium BC, only little is known about its surface structure. Researchers from TU Wien are now shedding light on the nature of the bitumen surface using physicochemical analyses.

While atomic force microscopy and scanning electron microscopy have already provided information on the morphology of bitumen surfaces in the past, for a long time it was not known whether surface and chemical composition correlate with each other. However, the chemical composition of the surface is of particular interest because oxidation processes take place there, triggered by oxygen-containing molecules in the air such as ozone, nitrogen oxides or hydroxyl radicals. The oxidation process accelerates the aging of the material - the bitumen becomes porous and damage develops.

The materials chemists Dr. Ayse Koyun and Prof. Hinrich Grothe from TU Wien therefore examined the bitumen surface using various physicochemical analysis methods and compared the respective results with each other. The researchers published the data on June 29 in the journal Scientific Reports.

A diverse material

Bitumen is produced from petroleum and primarily used for the production of asphalt. Its consistency depends largely on temperature - at hot temperatures it is viscous and larger chemical compounds such as aliphatics, petroleum resins and asphaltenes move freely in the mass. When the bitumen cools, however, the material solidifies and the individual molecules arrange themselves in characteristic patterns. Analyses have already shown that so-called core-shell particles form on the surface. These are composites that consist of at least two different components.

Since asphalt and bitumen are used for road construction as well as for waterproofing work, the longest possible product lifetime is desirable. To slow down the aging of the material, reactions triggered by reactive gases, light and heat must be minimized. " Once we understand the oxidation behavior of bitumen better, we can look for appropriate measures to prevent atmospheric aging. This can extend the lifespan of a bitumen product by many years, saving energy and material resources," Koyun explains. In a study published in Colloids and Surfaces A: Physicochemical and Engineering Aspects, she has already been able to show how the chemical composition of bitumen affects its aging process.

Mix of methods provides new info

In close collaboration with Harvard University, Bruker Nano-Surfaces Division as well as IONTOF GmbH, Ayse Koyun, first author of the study, investigated the bitumen surface using three different methods: nanoscale infrared spectroscopy based on photothermal expansion (AFM-IR), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and fluorescence microscopy. In combination, these methods provide valuable insights into the multiphase nature of the bitumen surface. "The resolution of conventional measurement methods used to study surface composition is too low for chemical characterization. Individual domains of the surface cannot be determined in this way," Koyun explains. "However, by combining different physicochemical methods, we succeed in mapping the structure down to ten nanometers." The result: the surface is heterogeneous. The findings of microscopic and spectroscopic methods correlate and can be interpreted conclusively.

A complete picture is created

"For a long time, bitumen was like an unsolved puzzle for us materials chemists," says Hinrich Grothe, head of the Physical Chemistry of the Atmosphere research group. "We know many details, but until now it has not been possible to piece them together into a complete picture. However, the combination of several physicochemical methods, as we applied them, was finally able to show us how the individual molecular assemblies are distributed in the bitumen." " This allowed us to solve the puzzle and complete our knowledge of bitumen," adds Ayse Koyun, who is completing two research stays at Harvard University as part of a Marshall Scholarship and with support from the TU Wien.

More about TU Wien
  • News

    Anchoring single atoms

    There is a dictum to “never change a running system”. New methods can however be far superior to older ones. While to date chemical reactions are mainly accelerated by catalytic materials that comprise several hundreds of atoms, the use of single atoms could provide a new approach for catal ... more

    How ions get their electrons back

    Very unusual atomic states are produced at TU Wien: Ions are created by removing not just one but 20 to 40 electrons from each atom. These “highly charged ions” play an important role in current research. For a long time, people have been investigating what happens when such highly charged ... more

    The factory of the future speaks our language

    The complexity of large industrial production plants is hardly manageable for a single person. In order to maintain, monitor and service an industrial production line, it therefore makes sense to rely on artificial intelligence (AI). There are different strategies for this. The most obvious ... more

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. more

    Noreia

    The coating machine Noreia was built at TU Wien. This time-lapse video shows the construction process. more

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... more