29-Nov-2021 - Ruhr-Universität Bochum

A seemingly unattainable energy transition

Researchers have managed to address an unusual energy transition in a semiconductor

Researchers from Basel and Bochum have succeeded in addressing an apparently unattainable energy transition in an artificial atom using laser light. Making use of the so-called radiative Auger process, they were the first team to specifically excite it. In this process, an electron falls from a higher to a lower energy level and, as a result, emits its energy partly in the form of light and partly by transferring it to another electron. The artificial atoms are narrowly defined areas in semiconductors that could one day form the basis for quantum communication. The findings are described by the team from the University of Basel and Ruhr-Universität Bochum together with colleagues from Münster and Wroclaw in “Nature Communications”, published online on 12 November 2021.

Electrons move between energy states

Atoms consist of a nucleus and electrons that travel around the nucleus. These electrons can assume different energy levels. Electrons that are more tightly bound to the nucleus, i.e. closer to it, have a lower energy than electrons that are further away from the nucleus. However, the electrons can’t assume any arbitrary energy levels – only certain levels are possible.

If an electron acquires energy, for example by absorbing a light particle, i.e. photon, it can be raised to a higher energy level. If an electron falls to a lower energy level, energy is released. This energy can be emitted in the form of a photon. But it can also be transferred to one of the other electrons; in this case, only some of the energy is released as light, the rest is absorbed by the other electron. This process is known as the radiative Auger process.

Exciting a unique energy transition with two lasers

By irradiating light particles, electrons can not only be lifted to a higher energy level; they can also be stimulated to give off energy by an incident light particle. The energy of the incident light particle must always correspond exactly to the difference in the two energy levels between which the electron is to be transferred. The researchers have used two lasers: one moved electrons between a low and a high energy level; the other between the high and a medium energy level. This middle energy level corresponds to a non-equilibrium level: the transfer to the middle level doesn’t exist without a radiative Auger process. In addition, a transition between the low and the medium energy level shouldn’t have occurred, because the relevant light was not irradiated. However, precisely this seemingly impossible transition occurred in reality due to the energy transfer from one electron to another in the radiative Auger process.

The ultrapure semiconductor samples for the experiment were produced by Dr. Julian Ritzmann at Ruhr-Universität Bochum under the supervision of Dr. Arne Ludwig at the Chair for Applied Solid State Physics headed by Professor Andreas Wieck. The measurements were carried out by a team from the University of Basel run by Clemens Spinnler, Liang Zhai, Giang Nguyen and Dr. Matthias Löbl in the group headed by Professor Richard Warburton.

Facts, background information, dossiers
More about RUB
  • News

    Tsunami in a water glass

    A new experiment has made it possible to observe the effects of an electron in solution on the surrounding liquid. So-called hydrated electrons play a major role in many physical, chemical and biological processes. They are not bound to an atom or molecule and are free in the solution. Sinc ... more

    Tens of thousands of feasible catalysts on the diameter of a hair

    When searching for catalysts for the energy transition, materials consisting of at least five elements are considered highly promising. But there are theoretically millions of them – how do we identify the most powerful one? A Bochum-based research team led by Professor Alfred Ludwig, head ... more

    Protecting biocatalysts from oxygen

    Certain enzymes from bacteria and algae can produce molecular hydrogen from protons and electrons – an energy carrier on which many hopes are riding. All they need for this purpose is light energy. The major obstacle to their use is that they are destroyed by contact with oxygen. An interdi ... more

More about Universität Basel
  • News

    From the packet into your food: what harmful substances are in food packaging?

    Salad boxes to go, sealed-tray lasagna and apple juice in PET bottles: we encounter packaged food and drink everywhere. A new database shows which packaging contains harmful substances that can be transferred to its contents. It also includes findings from researchers at the University of B ... more

    Cooling matter from a distance

    Researchers from the University of Basel have succeeded in forming a control loop consisting of two quantum systems separated by a distance of one meter. Within this loop, one quantum system — a vibrating membrane — is cooled by the other — a cloud of atoms, and the two systems are coupled ... more

    Tracking down microplastics in Antarctica

    Microplastics are an environmental problem since organisms ingest these tiny particles and can be harmed by them. Even remote regions such as Antarctica are affected. To quantify this form of pollution and find out where the small particles come from, a research team from the Department of ... more