01-Jun-2022 - Ecole Polytechnique Fédérale de Lausanne (EPFL)

Tracking chirality in real time

“These ground-breaking experiments show that time-resolved circular dichroism is uniquely suited to capture the molecular motion that drives many (bio)chemical processes”

Scientists at EPFL have developed a new laser-based technique that can measure ultrafast changes in the structural symmetry of molecules, called chirality, tracking their conformational shifts in real time. In a collaboration with researchers from the Universities of Geneva and Pisa, the breakthrough resolves a long-standing issue on how an important class of metal complexes switch their magnetic properties when triggered by a flash of light, and can have implications for magnetic data storage applications.

Chiral molecules exist in two forms, called enantiomers, which are mirror images of each other and non-superposable – much like a pair of hands. While they share most chemical and physical properties, enantiomers can have adverse effects in (bio)chemical phenomena. For example, a protein or enzyme may only bind one enantiomeric form of a target molecule. Consequently, identification and control of chirality is often key to designing (bio)chemical compounds, e.g. in the food, fragrance, and pharmaceutical industries. 

A most common technique for detecting chirality is called circular dichroism, which measures how chiral samples absorb left- and right-circularly polarized light differently to directly identify pairs of enantiomers. Circular dichroism can also help resolve the conformation of a molecule through its chiral response – a feature that has made it a popular analytical tool in (bio)chemical sciences.

However, circular dichroism has so far been limited in time-resolution and spectral range. Researchers led by Malte Oppermann in the group of Majed Chergui at EPFL, have now developed a new time-resolved instrument that measures circular dichroism changes in fractions of a picosecond (one trillionth of a second), meaning that it can “take” ultrafast snapshots of a molecule’s chirality throughout its (bio)chemical activity. This makes it possible to capture the chirality of photoexcited molecules and to resolve the conformational motion that drives the conversion of the absorbed light energy.

In a collaboration with the group of Jérôme Lacour at the University of Geneva and Francesco Zinna at the University of Pisa, the researchers used the new method to investigate the magnetic-switching dynamics of so-called “iron-based spin-crossover complexes” – an important class of metallo-organic molecules with promising applications in magnetic data storage and processing devices. After decades of research, the deactivation mechanism of their magnetic state has remained unresolved, despite its importance for magnetic data storage.

Carrying out a time-resolved circular dichroism experiment, the researchers discovered that the loss of magnetization is driven by a twisting of the molecule’s structure that distorts its chiral symmetry. Remarkably, the team was also able to slow down the decay of the magnetic state by suppressing the twisting motion in modified complexes.

“These ground-breaking experiments show that time-resolved circular dichroism is uniquely suited to capture the molecular motion that drives many (bio)chemical processes,” says Malte Oppermann. “This offers a new way for investigating challenging dynamic phenomena – for example the ultrafast rotations of synthetic molecular motors, and the conformational changes of proteins and enzymes in their native liquid environment.”

Facts, background information, dossiers
  • circular dichroism
  • spin cross-over
More about Ecole Polytechnique Fédérale de Lausanne
  • News

    New PET-like plastic made directly from waste biomass

    It is becoming increasingly obvious that moving away from fossil fuels and avoiding the accumulation of plastics in the environment are key to addressing the challenge of climate change. In that vein, there are considerable efforts to develop degradable or recyclable polymers made from non- ... more

    Getting hydrogen out of banana peels

    As the world’s energy demands increase, so does our consumption of fossil fuels. The result is a massive rise in greenhouse gases emissions with severely adverse environmental effects. To address this, scientists have been searching for alternative, renewable sources of energy. A main candi ... more

    Molecular device turns infrared into visible light

    Light is an electromagnetic wave: it consists of oscillating electric and magnetic fields propagating through space. Every wave is characterized by its frequency, which refers to the number of oscillations per second, measured in Hertz (Hz). Our eyes can detect frequencies between 400 and 7 ... more

  • Videos

    Water generates electricity (with a pinch of salt!)

    EPFL researchers have developed a system that generates electricity from osmosis with unparalleled efficiency. Their work, featured in "Nature", uses seawater, fresh water, and a new type of membrane just three atoms thick. more

    Stretchable electronics that quadruple in length

    EPFL researchers have developed conductive tracks that can be bent and stretched up to four times their original length. They could be used in artificial skin, connected clothing and on-body sensors. more