06-Dec-2013 - Guangdong Institute of Eco-environmental and Soil Sciences

Turning waste into power with bacteria — and loofahs

Loofahs, best known for their use in exfoliating skin to soft, radiant perfection, have emerged as a new potential tool to advance sustainability efforts on two fronts at the same time: energy and waste. The study describes the pairing of loofahs with bacteria to create a power-generating microbial fuel cell (MFC) and appears in the ACS journal Environmental Science & Technology.

Shungui Zhou and colleagues note that MFCs, which harness the ability of some bacteria to convert waste into electric power, could help address both the world’s growing waste problem and its need for clean power. Current MFC devices can be expensive and complicated to make. In addition, the holes, or pores, in the cells’ electrodes are often too small for bacteria to spread out in. Recently, researchers have turned to plant materials as a low-cost alternative, but pore size has still been an issue. Loofahs, which come from the fully ripened fruit of loofah plants, are commonly used as bathing sponges. They have very large pores, yet are still inexpensive. That’s why Zhou’s team decided to investigate their potential use in MFCs.

When the scientists put nitrogen-enriched carbon nanoparticles on loofahs and loaded them with bacteria, the resulting MFC performed better than traditional MFCs. “This study introduces a promising method for the fabrication of high-performance anodes from low-cost, sustainable natural materials,” the researchers state.

Facts, background information, dossiers
  • anodes
  • Guangdong Institute…
More about American Chemical Society
  • News

    Biofuels from the brewery?

    Home brewing enthusiasts and major manufacturers alike experience the same result of the beer-making process: mounds of leftover grain. Once all the flavor has been extracted from barley and other grains, what's left is a protein- and fiber-rich powder that is typically used in cattle feed ... more

    Double-duty catalyst generates hydrogen fuel while cleaning up wastewater

    Hydrogen is a pollution-free energy source when it's extracted from water using sunlight instead of fossil fuels. But current strategies for "splitting" or breaking apart water molecules with catalysts and light require the introduction of chemical additives to expedite the process. Now, re ... more

    Termite gut microbes could aid biofuel production

    Wheat straw, the dried stalks left over from grain production, is a potential source of biofuels and commodity chemicals. But before straw can be converted to useful products by biorefineries, the polymers that make it up must be broken down into their building blocks. Now, researchers repo ... more

  • Videos

    What Makes Rubber Rubbery?

    Reactions is looking at sports science today. Sports balls owe their reliability to an unusual polymer. Learn about the chemistry of rubber the all-star’s best friend! more

    Dragon's Blood Could Save Your Life

    This week Reactions is looking at chemistry in bizarre places that could save your life. The science within the blood of the Komodo dragon or in a horseshoe crab can help with antibiotic resistance. But it doesn't end there, so we're taking a closer look at other wild places in nature that ... more

    Why is Olive Oil Awesome?

    Whether you sop it up with bread or use it to boost your cooking, olive oil is awesome. But a lot of chemistry goes on in that bottle that can make or break a product. Take the “extra virgin” standard: Chemistry tells us that a higher free-fatty-acid content leads to a lower grade, less tas ... more