No more problems with reflective surfaces

Max Planck start-up nanoAR receives funding from "exist"-Forschungstransfer

16-Oct-2025
Copyright: nanoAR

I spy with my little eye: The photo shows a glass sample coated with nanoAR on both sides; the sample is almost invisible because the reflectance is extremely low — only its shadow reveals that it is there.

Most people have been irritated by the reflection of sunlight on their smartphone display or their spectacles. Many solutions are available — but until now none for curved surfaces or situations with a wide range of light incidence angles. Scientists at the Max Planck Institute for Medical Research have now developed a technology based on nanostructuring that prevents annoying glare effects even in these cases. Their “nanoAR” start-up aims to bring this technology to market, and is now funded by an “exist”-Forschungstransfer grant from the German government.

  • The scientists who teamed up to establish the start-up nanoAR fabricate nanostructures modeled on the eyes of moths, whose structure suppresses the reflection of light.
  • This technology reduces reflections on surfaces and can be applied in imaging lenses, eyeglasses, smartphones, lasers and AI vision devices.
  • The funding by the “exist” Forschungstransfer will support “nanoAR” for two years while the business is launched. The team is now seeking new members for customer acquisition and business development, including for the new location of the Max Planck Institute for Medical Research on the Heilbronn Bildungscampus.

Anti-reflective on curved surfaces and in various wavelength ranges

The market for global anti‑reflection (AR) coatings is large, yet current solutions often fail to meet performance requirements on curved surfaces and across a wide range of incident angles. The nanoAR technology addresses these gaps. Unlike conventional thin-film AR coatings which require different layers for different wavelength ranges, nanoAR works across multiple wavelength ranges with a single coating.

Inspired by nature: the moth-eye effect – but improved

The model for this comes from nature: The technology mimics the moth's eyes. These are covered with a regular structure of small, column-shaped protrusions. “Our structure inspired by moth eyes reduces surface reflectance to as little as 0.01 percent. What is new about our process is that it achieves uniform anti-reflective performance on curved surfaces”, explains Zhaolu Diao, scientist at the Max Planck Institute (MPI) for Medical Research and CEO of nanoAR.

The Max Planck scientists use the so-called BCML method to replicate moth eye structures in an intelligent and efficient manner. BCML stands for “block copolymer micelle lithography”, a nanostructuring technique in which polymers consisting of a linear sequence of molecules are placed on surfaces in such a way that they organize themselves into ordered patterns with the help of micelles.

“We fabricate moth‑eye nanostructures in glass, polymers, and other optical materials. Our goal with nanoAR is to translate the technology developed at the MPI for Medical Research into market‑ready products”, says Zhaolu Diao. He joined forces with his current and former colleagues Xiaodi Hong (CTO) and Klaus Weishaupt (COO), who are also involved in the start-up. They all share a passion for translating research results into practical applications that improve everyday life. The team will also be working with its technology and spin-off at the new location of the MPI for Medical Research on the Heilbronn Bildungscampus.

Founding planned by the end of 2026

The scientists plan to establish nanoAR GmbH by the end of 2026. The next step is to secure a reference customer and establish market visibility. nanoAR offers two collaboration models: customers can license their technology and integrate the nanoAR process into their existing production lines, or nanoAR can directly supply optical components — such as glass lenses, polymer lenses, and windows — tailored to the specific requirements of the customer.

Other news from the department science

These products might interest you

Dursan

Dursan by SilcoTek

Innovative coating revolutionizes LC analysis

Stainless steel components with the performance of PEEK - inert, robust and cost-effective

HPLC accessories
OCA 200

OCA 200 by DataPhysics

Using contact angle meter to comprehensively characterise wetting behaviour, solids, and liquids

With its intuitive software and as a modular system, the OCA 200 answers to all customers’ needs

contact angle measuring instruments
Tailor-made products for specific applications

Tailor-made products for specific applications by IPC Process Center

Granulates and pellets - we develop and manufacture the perfect solution for you

Agglomeration of powders, pelletising of powders and fluids, coating with melts and polymers

toll manufacturing
Loading...

Most read news

More news from our other portals

Something is happening in the chemical industry ...

This is what true pioneering spirit looks like: Plenty of innovative start-ups are bringing fresh ideas, lifeblood and entrepreneurial spirit to change tomorrow's world for the better. Immerse yourself in the world of these young companies and take the opportunity to get in touch with the founders.