My watch list
my.chemeurope.com  
Login  

Terahertz dance of amino acids

RUB chemists explain the fingerprint of dissolved glycine in the Terahertz range

01-Apr-2014

© RUB, Illustration: Decka, Havenith

Terahertz dance of the molecules: The molecular motion of the amino acid glycine and its surrounding water molecules result in the formation of characteristic bands in the Terahertz spectrum.

Chemists at the Ruhr-Universität Bochum (RUB) have, for the first time, completely analysed the fingerprint region of the Terahertz spectrum of a biologically relevant molecule in water, in this case, an amino acid. By combining spectroscopy and molecular-dynamics simulations, they rendered the motion of the most basic amino acid, glycine, visible in an aqueous solution. Their results have disproved the long-standing theory that frequencies in the Terahertz range provide no information regarding the amino acid’s motion.

Representing molecular motion by means of Terahertz spectroscopy

Researchers use Terahertz (THz) spectroscopy to send short radiation pulses into a sample of interest. The Terahertz range covers wavelengths of one to ten THz (0.3 millimetres to 30 micrometres) and extends between the infrared and the microwave range. The sample, in this case a mixture of water and glycine, partially absorbs the radiation, forming an absorption pattern, which is represented by chemists in the form of a spectrum. Certain areas of the spectrum, so-called bands, describe the motions of molecular bonds. Individual atoms in a molecule are not bonded rigidly; rather, they are permanently in motion. Complex computer simulations contribute significantly to analysing the spectra, as it is not always easy to decipher which individual bands of a spectrum correlate with which molecular motions.

THz analysis renders glycine motion in water visible

The RUB team has proved that THz analysis may be used to represent both the motion inside the glycine molecule and the motion of the glycine molecule together with its bound water molecules. The bands in the Terahertz spectrum, moreover, reflected the glycine's opening and closing motion. The spectrum also incorporated the motion of hydrogen bridges between the glycine and its bound water molecules. "The interaction between ab initio molecular-dynamics simulations and Terahertz spectroscopy provides us with an excellent instrument for tracking and understanding solvation processes on the molecular level," says Martina Havenith-Newen, Head of the Department of Physical Chemistry II.

Facts, background information, dossiers
  • Ruhr-Universität Bochum
More about Ruhr-Universität Bochum
  • News

    How two water molecules dance together

    Although water is omnipresent, the interaction between individual water molecules is not yet fully understood. An international research team has gained new insights into how water molecules interact. For the first time, the researchers were able to completely observe all of the movements b ... more

    Lightning bolt underwater

    A plasma tears through the water within a few nanoseconds. It may possibly regenerate catalytic surfaces at the push of a button. Electrochemical cells help recycle CO2. However, the catalytic surfaces get worn down in the process. Researchers at the Collaborative Research Centre 1316 “Tran ... more

    Chemist integrates plant enzymes into sensors and fuel cells

    Bochum-based chemist Professor Nicolas Plumeré has been awarded the Luigi Galvani Prize by the Bioelectrochemical Society. The prize is awarded every two years to a researcher who has made an outstanding contribution to the field of bioelectrochemistry. Plumeré has successfully optimised co ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE