16-Jul-2014 - University of California, Davis

NMR under pressure: Reproducing deep-Earth chemistry

A new pressure cell invented by UC Davis researchers makes it possible to simulate chemical reactions deep in the Earth's crust. The cell allows researchers to perform nuclear magnetic resonance (NMR) measurements on as little as 10 microliters of liquid at pressures up to 20 kiloBar.

"NMR is our window into the chemical world," said Brent Pautler, a postdoctoral researcher in chemistry at UC Davis and first author on the paper in Angewandte Chemie. "It lets us see chemical reactions as they are happening."

The new device allows researchers for the first time to study chemical reactions in liquid water under pressure, without it freezing into a solid.

"We were able to get to the point where we could no longer ignore the compressibility of the water molecules," Pautler said. "This is the first time this has ever been reported."

Geochemists want to know what kind of chemistry is happening deep in the Earth's crust, beyond the reach of boreholes. These chemical reactions could affect water and minerals that eventually migrate to the surface, or the behavior of carbon cycling between the Earth's depths and the surface.

"Aqueous fluids deep in the Earth are the great unknown for geochemists," said Chris Colla, a graduate student in Earth & Physical Sciences at UC Davis and co-author on the paper. "By doing NMR we can get an inside view of what is occurring deep in the Earth's crust."

For example, Pautler, Colla and colleagues have already looked at calcium ions in solution. Dissolved calcium ions can be surrounded by four, six or eight water molecules. High pressure forces dissolved calcium into an eight-water state, they found.

The high-pressure measurements could also shed light on chemical processes involved in hydraulic fracturing, or "fracking," and the behavior of buried nuclear waste over long periods of time. Fracking is the process of extracting oil and gas by injecting liquids under high pressure into rocks.

Facts, background information, dossiers
More about UC Davis
  • News

    Anti-solar cells: A photovoltaic cell that works at night

    What if solar cells worked at night? That's no joke, according to Jeremy Munday, professor in the Department of Electrical and Computer Engineering at UC Davis. In fact, a specially designed photovoltaic cell could generate up to 50 watts of power per square meter under ideal conditions at ... more

    Biological enzymes as source of hydrogen fuel

    Research from the University of Illinois and the University of California, Davis has chemists one step closer to recreating nature's most efficient machinery for generating hydrogen gas. This new development may help clear the path for the hydrogen fuel industry to move into a larger role i ... more

    Piezomagnetic material changes magnetic properties when stretched

    Piezoelectric materials, which generate an electric current when compressed or stretched, are familiar and widely used: think of lighters that spark when you press a switch, but also microphones, sensors, motors and all kinds of other devices. Now a group of physicists has found a material ... more