NREL research advances understanding of photoelectrodes
Scientists at the Energy Department's National renewable energy Laboratory (NREL) have developed a new probe that could lead to a better photoelectrochemical cell.
Ye Yang and Jing Gu are lead authors of the paper. NREL colleagues, James Young, Elisa Miller, John Turner, Nathan Neale and Matthew Beard also contributed to the research.
Photoelectrochemical cells can be used to convert solar energy into transportable chemical fuels. The photoconversion process employs a semiconductor photoelectrode where photoexcited electrons move to the surface of the electrode to drive chemical reactions, such as reduction of water to produce hydrogen.
As the charges move, fields are formed within the photoelectrode. The NREL team developed a spectroscopic probe that for the first time allows the formation and decay of these fields to be monitored directly.
The NREL researchers used the new probe to better understand the photophysics of photoelectrodes made from the semiconductor gallium-indium-phosphide (GaInP2). Previous work at NREL used GaInP2 as part of a high-efficiency water splitting system to generate hydrogen from sunlight. By using the newly developed probe, the scientists uncovered the role that a titanium dioxide (TiO2) / GaInP2 interface plays in the photoconversion process.
The new measurement tool could lead to improvements in how photoelectrodes are designed to make them more efficient and more stable.
Additional research is needed, including the incorporation of a catalyst on the surface of the TiO2, where this technique can be used to understand the role of the catalyst in the hydrogen production reaction.
Original publication
Other news from the department science
These products might interest you

EasyViewer™ - iCVision - Image2Chord by Mettler-Toledo
Precise particle size analysis with real-time data
Increase your efficiency with excellent image quality and autofocus

MiniLab AR & AP by SEAL Analytical
Robot-assisted analysis of pH, conductivity, BOD
Reduce your workload and increase reliability in the laboratory

Crystalline PV/RR by Technobis
Crystalline PV/RR – multiple reactor system for crystallization process and formulation development
Access crystallization and formulation information at mL scale. Every picture tells your story

Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
See the theme worlds for related content
Topic world Sensor technology
Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.

Topic world Sensor technology
Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.
Last viewed contents
Hess's_law
FEI Introduces Tecnai(TM) G2 -- The Next Generation of Industry-Leading TEMs

New coating surface for superior rust resistance with 'colorless' color - Electrophoretic deposition coats metal with non-ionic polymer

Device combines power of mass spectrometry, microscopy
