17-Mar-2017 - University of Queensland

Next-gen steel under the microscope

Next-generation steel and metal alloys are a step closer to reality, thanks to an international research project involving a University of Queensland scientist.

The work could overcome the problem of hydrogen alloy embrittlement that has led to catastrophic failures in major engineering and building projects.

UQ Centre for Microscopy and Microanalysis Director Professor Roger Wepf said the problem had been recognised for almost 140 years.

"The current generation of these metals can suffer hydrogen embrittlement, where they become brittle and fracture due to the accidental introduction of hydrogen during manufacture and processing," he said.

"A major example of alloy embrittlement occurred in 2013, when bolts in the eastern span of the San Francisco-Oakland bridge failed tests during construction."

Professor Wepf said hydrogen was extremely volatile and diffused quickly.

"Our research collaboration has, for the first time, localised and visualised hydrogen in steels and alloys," he said.

"This is essential for the development of new alloys with greater endurance."

"We have shown that it's possible to localise hydrogen at atomic resolution -- at the scale of a single atom -- or at a nanometre (less than one-billionth of a metre) scale by combining different technologies in a closed and protected workflow.

"These include state-of-the-art cryo electron microscopy freezing techniques, low-temperature sample preparation in a cryo focused ion beam microscope, and inert cryo-transfer.

Facts, background information, dossiers
  • cryo-electron microscopy
More about University of Queensland
  • News

    Superworms capable of munching through plastic waste

    Researchers at the University of Queensland have found a species of worm with an appetite for polystyrene could be the key to plastic recycling on a mass scale. Scientists discovered the common Zophobas morio ‘superworm’ can eat through polystyrene, thanks to a bacterial enzyme in their gut ... more

    Discovery paves the way for faster computers, longer-lasting batteries

    University of Queensland scientists have cracked a problem that’s frustrated chemists and physicists for years, potentially leading to a new age of powerful, efficient, and environmentally friendly technologies. Using quantum mechanics, Professor Ben Powell from UQ’s School of Mathematics a ... more

    Tunable plastic thermometers

    Researchers at the Universities of Queensland and New South Wales in Australia have discovered that the ability of a plastic to conduct electricity can be tuned by exposure to an ion beam. Usually plastics conduct electricity so poorly that they are used as the insulation around electrical ... more