19-Nov-2008 - Institute of Physics

Dancing droplets

Our blood, sweat and tears are three precious fluids that can answer lots of questions about the state of our health but testing small amounts of bodily fluids, without contaminating them through contact with solid surfaces or other fluids, is something that fluid mechanics have long pondered.

A group of physicists from the University of Liege, Belgium, is publishing research in the New Journal of Physics, which shows how lab technicians can make droplets dance, float and bounce above a surface, keeping small amounts of fluid free of contamination and ripe for testing.

Several years ago, acoustic levitation was introduced to keep a droplet separate from its surroundings but the equipment required for this is complex, big and expensive. Alternatively, the technique of bouncing droplets was introduced in 2005 but until now it could only be used on a specific range of droplets with high viscosity.

The new technique which the physicists began work on three years ago, when one of the researchers noticed that certain bass notes emanating from his iPod speaker could make droplets 'roll' and appear to dance, works for a much larger range of viscosity fluids than previous techniques and also for a larger range of droplet size – making it much more useful for chemists, biologists and food scientists.

The technique is simple and does not require complex machinery – droplets can be released over a bath of oil that is vertically shaken and under certain conditions of vibration and droplet size, droplets will bounce, float and dance.

As the researchers write, "In the miniaturisation age, the manipulation of tiny quantities of liquid becomes more and more important in chemistry, biology, health sciences and the food industry. The technique we propose allows the manipulation of droplets without any contact with another liquid or solid. The droplets bounce, float and move into the air."

Facts, background information, dossiers
More about Institute of Physics
  • News

    Graphene microphone outperforms traditional nickel and offers ultrasonic reach

    The researchers, based at the University of Belgrade, Serbia, created a vibrating membrane - the part of a condenser microphone which converts the sound to a current - from graphene, and were able to show up to 15 dB higher sensitivity compared to a commercial microphone, at frequencies up ... more

    Exploring the physics of a chocolate fountain

    A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight downwards. "Chocolate fountains are just cool, aren't they!" says ... more

    Using magnetic permeability to store information

    Scientists have made promising steps in developing a new magnetic memory technology, which is far less susceptible to corruption by magnetic fields or thermal exposure than conventional memory. The findings, which report the use of magnetic permeability - how easily a magnetic field will ma ... more

More about Université de Liège
  • News

    Study finds higher pathogen loads in collapsed honeybee colonies

    Honeybees in colonies affected by colony collapse disorder (CCD) have higher levels of pathogens and are co-infected with a greater number of pathogens than their non-CCD counterparts, but no individual pathogen can be singled out as the cause of CCD, according to a study by an internationa ... more