My watch list
my.chemeurope.com  
Login  

Nanotubes can solder themselves

27-Nov-2013

University of Illinois researchers have developed a way to heal gaps in wires too small for even the world’s tiniest soldering iron.

Led by electrical and computer engineering professor Joseph Lyding and graduate student Jae Won Do, the Illinois team published its results in the journal Nano Letters.

Carbon nanotubes are like tiny hollow wires of carbon just 1 atom thick – similar to graphene but cylindrical. Researchers have been exploring using them as transistors instead of traditional silicon, because carbon nanotubes are easier to transport onto alternate substrates, such as thin sheets of plastic, for low-cost flexible electronics or flat-panel displays.

Carbon nanotubes themselves are high-quality conductors, but creating single tubes suitable to serve as transistors is very difficult. Arrays of nanotubes are much easier to make, but the current has to hop through junctions from one nanotube to the next, slowing it down. In standard electrical wires, such junctions would be soldered, but how could the gaps be bridged on such a small scale?

“It occurred to me that these nanotube junctions will get hot when you pass current through them,” said Lyding, “kind of like faulty wiring in a home can create hot spots. In our case, we use these hot spots to trigger a local chemical reaction that deposits metal that nano-solders the junctions.”

Lyding’s group teamed with Eric Pop, an adjunct professor of electrical and computer engineering, and John Rogers, Swanlund professor in materials science and engineering, experts on carbon nanotube synthesis and transfer, as well as chemistry professor Greg Girolami. Girolami is an expert in a process that uses gases to deposit metals on a surface, called chemical vapor deposition (CVD).

The nano-soldering process is simple and self-regulating. A carbon nanotube array is placed in a chamber pumped full of the metal-containing gas molecules. When a current passes through the transistor, the junctions heat because of resistance as electrons flow from one nanotube to the next. The molecules react to the heat, depositing the metal at the hot spots and effectively “soldering” the junctions. Then the resistance drops, as well as the temperature, so the reaction stops. (See video for demonstration of the process.)

The nano-soldering takes only seconds and improves the device performance by an order of magnitude – almost to the level of devices made from single nanotubes, but much easier to manufacture on a large scale.

“It would be easy to insert the CVD process in existing process flows,” Lyding said. “CVD technology is commercially available off-the-shelf. People can fabricate these transistors with the ability to turn them on so that this process can be done. Then when it’s finished they can finish the wiring and connect them into the circuits. Ultimately it would be a low-cost procedure.”

Now, the group is working to refine the process.

“We think we can make it even better,” Lyding said. “This is the prelude, we hope, but it’s actually quite significant.”

Facts, background information, dossiers
More about UIUC
  • News

    A spectroscopic 'science camera' system for smartphones

    The latest versions of most smartphones contain at least two and sometimes three built-in cameras. Researchers at the University of Illinois would like to sell mobile device manufactures on the idea of adding yet another image sensor as a built-in capability for health diagnostic, environme ... more

    Flying with fuel from sugarcane

    A Boeing 747 burns one gallon of jet fuel each second. A recent analysis from researchers at the University of Illinois estimate that this aircraft could fly for 10 hours on bio-jet fuel produced on 54 acres of specially engineered sugarcane. Plants Engineered to Replace Oil in Sugarcane an ... more

    Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

    Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE