My watch list
my.chemeurope.com  
Login  

Organoborane



Organoborane or organoboron compounds are chemical compounds that are organic derivatives of BH3, for example trialkyl boranes. Organoboron chemistry or organoborane chemistry is the chemistry of these compounds [1] [2]. Organoboron compounds are important reagents in organic chemistry enabling many chemical transformations, the most important one called hydroboration.

Additional recommended knowledge

Contents

Properties

The C-B bond has low polarity (the difference in electronegativity 2.55 for carbon and 2.04 for boron) and therefore alkyl boron compounds are in general stable though easily oxidized. Vinyl groups and aryl groups donate electrons and make boron less electrophilic and the C-B bond gains some double bond character. Like the parent borane, diborane, organoboranes are classified in organic chemistry as strong electrophiles because boron is unable to gain a full octet of electrons. Unlike diborane however, organoboranes do not form dimers.

Other boranes (of academic interest) are carboranes, cluster compounds of carbon and boron and borabenzene, the boron equivalent of benzene.

Organoboranes with carbon replaced by oxygen are borinic esters R2BOR, boronic esters RB(OR)2 and borates RB(OR)3 such as trimethylborate. In organometallic chemistry compounds with metal to boron bonds are called boryls (M-BR2) or borylenes (M-B(R)-M).

Synthesis

  • Simple organoboranes such as triethylborane or tris(pentafluorophenyl)boron can be prepared from trifluoroborane (as the ether complex) and the ethyl Grignard reagent.
  • Boranes react rapidly to alkenes in a process called hydroboration. This concept was discovered by Dr. Herbert Charles Brown at Purdue University with help from Georg Wittig. Although diborane as a pure compound is a dimer, BH3 forms a 1:1 complex with oxygen in for instance THF. In an ordinary electrophilic addition reaction the Markovnikov's rule determines regioselectivity but with boranes the mode of action is the exact opposite. The reason is that boron is less electronegative than hydrogen. When a positive charge develops in the alkene on most substituted carbon atom, that is where the partially negatively charged hydrogen atom adds to, leaving the least substituted carbon atom for the boron atom. The so called anti-Markovnikov addition is most pronounced when the boron compound has very bulky substituents. One organoboron reagent that is often employed in synthesis is 9-borabicyclo[3.3.1]nonane or 9-BBN which is generated from the reaction of cyclooctadiene and diborane [3]. Hydroborations take place stereoselective in a syn mode, that is on the same face of the alkene. In this concerted reaction the transition state is represented as a square with the corners occupied by carbon, carbon, hydrogen and boron with maximum overlap between the two olefin p-orbitals and the empty boron orbital.


Reactions

  • Hydroboration-oxidation reaction. In organic synthesis the hydroboration reaction is taken further to generate other functional groups in the place of the boron group. The Hydroboration-oxidation reaction offers a route to alcohols by oxidation of the borane with hydrogen peroxide or to the carbonyl group with the stronger oxidizing agent chromium oxide.
  • A second group of reactions that organoboron compounds are involved in create new carbon carbon bonds. Carbon monoxide is found to react very easily with a trialkylborane. What follows is a 1,2-rearrangement when an alkyl substituent on the anionic boron migrates to the adjacent electrophilic carbon of the carbonyl group. The carbonyl group can then be reduced to an alcohol group[citation needed].
  • Organoboron compounds also lend themselves to transmetalation reactions with organopalladium compounds. This reaction type is exemplified in the Suzuki reaction.
  • Borane hydrides such as 9-BBN and L-selectride (lithium tri-sec-butylborohydride) are reducing agents. An example of an asymmetric catalyst for carbonyl reductions is the CBS catalyst. This catalyst is also based on boron, the purpose of which is coordination to the carbonyl oxygen atom.
  • Trialkyl boranes can be oxidized to the corresponding borates. One method for the determination of the amount of C-B bonds in a compound is by oxidation of R3B with the nitroso compound nitrosomethane (MeNO) to RB(OR)3 and trimethyl amine Me3N which can be titrated.
  • Boronic acids ROH2 react with potassium hydrogen fluoride to a trifluoroborate salt RBF3M [4] which are precursors to nucleophilic alkyl and aryl boron difluorides (ArBF2). The salts are more stable than the boronic acids themselves and used for instance in alkylation of certain aldehydes [5] [6]:

Boryllithium

Nucleophilic anionic boryl compounds have long been elusive but a 2006 study described a boryllithium compound which reacts as a nucleophile [7] [8]:

This is remarkable because in other period 2 elements lithium salts are common e.g. lithium fluoride, lithium hydroxide lithium amide and methyllithium. Reaction of base with a borohydride R2BH does not result in deprotonation to the boryl anion R2B- but to formation of the boryl anion R2B-H(base)+ because only this reaction path gives a complete octet [9]. Instead the boryl compound is prepared by reductive heterolysis of a boron-bromide bond by lithium metal. The new boryl lithium compound is very similar to and isoelectronic with N-heterocyclic carbenes. It is designed to benefit from aromatic stabilization (6-electron system counting the nitrogen lone pairs and an empty boron p-orbital, see structure A) and from kinetic stabilization from the bulky 2,6-diisopropylphenyl groups. X-ray diffraction confirms sp2 hybridization at boron and its nucleophilic addition reaction with benzaldehyde gives further proof of the proposed structure.

Diborenes

Chemical compounds with boron to boron double bonds are rare. In 2007 the first neutral diborene (RHB=BHB) was presented [10] [11] [12]. Each boron atom has a proton attached to it and each boron atom is coordinated to a so-called NHC carbene.

Other uses

TEB - Triethylborane was used to ignite the JP-7 fuel of the Pratt / Whitney J-58 ramjet engines powering the Lockheed SR-71 Blackbird.

See also

  • Compounds of carbon with other elements in the periodic table:
CH He
CLi CBe CB CC CN CO CF Ne
CNa CMg CAl CSi CP CS CCl Ar
CK CCa CSc CTi CV CCr CMn CFe CCo CNi CCu CZn CGa CGe CAs CSe CBr Kr
CRb CSr CY CZr CNb CMo CTc CRu CRh CPd CAg CCd CIn CSn CSb CTe CI Xe
CCs CBa CHf CTa CW CRe COs CIr CPt CAu CHg CTl CPb CBi CPo CAt Rn
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Ac Th Pa CU Np Pu Am Cm Bk Cf Es Fm Md No Lr


Chemical bonds to carbon
Core organic chemistry many uses in chemistry.
Academic research, but no widespread use Bond unknown / not assessed.

References

  1. ^ The Roles of Boron and Silicon, Susan E. Thomas; Oxford Chemistry Primers No.1; 1991: Very good general book covering all the important reactions of boron and organoboranes in organic chemistry.
  2. ^ Organometallics Christoph Elschenbroich 3rd Ed. 2006 ISBN 3-527-29390-6 - Wiley-VCH, Weinheim
  3. ^ Advanced Organic Chemistry, F.A. carey, R.J. Sundberg ISBN 0-306-41088-5
  4. ^ Conversion of Arylboronic Acids into Potassium Aryltrifluoroborates: Convenient Precursors of Arylboron Difluoride Lewis Acids E. Vedejs, R. W. Chapman, S. C. Fields, S. Lin, M. R. Schrimpf J. Org. Chem. 1995; 60(10); 3020-3027. doi:10.1021/jo00115a016
  5. ^ Organoboron compounds as mild nucleophiles in Lewis acid- and transition metal-catalyzed C–C bond-forming reactions Robert A. Batey, Tan D. Quach, Ming Shen, Avinash N. Thadani, David V. Smil, Sze-Wan Li, and D. Bruce MacKay Pure Appl. Chem., Vol. 74, No. 1, pp. 43–55, 2002. http://www.iupac.org/publications/pac/2002/pdf/7401x0043.pdf
  6. ^ Displayed is a reaction sequence starting with reaction of allyl magnesium bromide with trimethylborate, followed by hydrolysis of the boronic ester to the boronic acid with hydrochloric acid. The aldehyde is p-nitrobenzaldehyde
  7. ^ Boryllithium: Isolation, Characterization, and Reactivity as a Boryl Anion Yasutomo Segawa, Makoto Yamashita, Kyoko Nozaki Science 6 October 2006: Vol. 314. no. 5796, pp. 113 - 115 doi:10.1126/science.1131914
  8. ^ Boron Attacks Electropositive element pressed into action as nucleophilic boryllithium Bethany Halford Chemical & Engineering News October 9, 2006 Volume 84, Number 41 p. 11 Link
  9. ^ Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. Dennis G. Hall ISBN 3-527-30991-8
  10. ^ A Stable Neutral Diborene Containing a BdB Double Bond Yuzhong Wang, Brandon Quillian, Pingrong Wei, Chaitanya S. Wannere, Yaoming Xie, R. Bruce King, Henry F. Schaefer, III, Paul v. R. Schleyer, and Gregory H. Robinson doi:10.1021/ja075932i
  11. ^ Neutral Diborene Is A First Ron Dagani Chemical & Engineering News October 1, 2007 Volume 85, Number 40 p. 10 [1]
  12. ^ The boron precursor is Boron tribromide and the reducing agent is KC8 which abstracts the required protons from diethyl ether solvent.
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Organoborane". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE