16-Jan-2018 - Universität Zürich

The first precise measurement of a single molecule's effective charge

Discovery could pave the way to new diagnostic tools

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve interactions between molecules like proteins, where their charge plays an essential role. Yet, the charge of a protein in an aqueous environment – its natural context in a living organism – is hard to determine accurately using traditional approaches.

Madhavi Krishnan, who holds an SNSF professorship at the University of Zurich, has developed a method to precisely measure the charge of a single molecule in solution. Her advance was described in a series of articles in Nature Nanotechnology, Physical Review E and the Journal of Chemical Physics. This discovery could pave the way to new diagnostic tools since, at a chemical level, many diseases are linked to a shift in a protein's electrical charge, which prevents the molecule from acting the way it should.

A molecule's electrical charge can be quite different in the gas phase and in solution. The reason for this difference lies in complex interactions between the object and the surrounding liquid. Hence, standard gas-phase measurements do not directly yield information on the molecule's behaviour in its biological context.

"Like kids kicking a ball"

Molecules in solution are in constant motion, randomly kicking each other. Krishnan and PhD student Francesca Ruggeri took advantage of this well-known phenomenon, called Brownian motion, in order to measure the effective charge of a molecule directly in solution.

First, they trapped the molecule in a "potential well". Rather than an actual well, this is a situation where the potential energy of the molecule is at its minimum. In such a situation, bouncing water molecules continuously attempt to expel the molecule from the well.

"It is like kids playing with a ball at the bottom of a pit," explains Krishnan. "The ball is the molecule we are interested in, and the children are the water molecules. The ball would have to receive quite a hard kick in order to fly out of the pit."

The higher the effective charge of the molecule, the greater the depth of the potential well and, consequently, the lower the likelihood that the molecule is ejected from the well. In practice, this means that the time needed for the molecule to be kicked out of the well is directly related to its effective charge.

"Ultimately it boils down to a statistical principle," explains Krishnan. "If we know how long a molecule remains trapped in the well, we know precisely how deep the well is. And since this depth depends directly on the molecule's effective charge, we can deduce this value very precisely too."

Two glass plates

In order to create a potential well, scientists compressed a solution containing the proteins between two glass plates, one of them being covered with microscopic holes. Molecules trapped in potential wells were labelled with fluorescent agents, which allowed them to be tracked with an optical microscope.

While the discovery has important fundamental implications, it could also pave the way towards novel diagnostic tools for many diseases caused by misshaped proteins, such as Alzheimer's and cancers. "We know that the 3D conformation of a protein influences its effective charge, and our work might present a novel route to detecting defective proteins."

Facts, background information, dossiers
  • molecules
  • charge measurement
  • proteins
  • diagnostics
More about Universität Zürich
  • News

    Machine learning cracks quantum chemistry conundrum

    A new machine learning tool can calculate the energy required to make -- or break -- a molecule with higher accuracy than conventional methods. While the tool can currently only handle simple molecules, it paves the way for future insights in quantum chemistry. "Using machine learning to so ... more

    Trust in Science and Research Remains High

    The Swiss population’s trust in science and research is high to very high. As the Science Barometer Switzerland 2019 study shows, people in Switzerland have a positive attitude towards science and are keen to receive information about research, with climate and energy considered the most im ... more

    Recycling carbon dioxide from the ocean

    Paper, tin cans, glass - the world recycles as much as possible. So why not declare the greenhouse gas carbon dioxide (CO2) a recycling product as well? Liquid fuels based on carbon will continue to play an important role in the future - despite international efforts to reduce them. So it s ... more

More about Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung
  • News

    Diamond watch components

    SNSF-funded researchers have developed a new technique for carving materials to create micromechanical systems. In particular, they have created a miniscule watch component out of synthetic single-crystal diamond. Diamond is very hard and elastic, a very good thermal conductor and highly tr ... more

    The key to chemical transformations

    Chemist Xile Hu is the winner of the National Latsis Prize for 2017. Hu, a professor at the École Polytechnique Fédérale de Lausanne, was recognised for his outstanding scientific career and his original contributions to the fundamental understanding of catalysis. Catalysis is a field of ch ... more

    Liquid shock absorbers

    Remarkable liquid materials called colloids stiffen under impact. Researchers funded by the SNSF have studied the effect of powerful impacts such as those produced by firearms or micrometeorites. At first glance, colloids resemble homogeneous liquids such as milk or blood plasma. But in fa ... more

  • Videos

    The key to chemical transformations

    Chemist Xile Hu is awarded the National Latsis Prize 2017, Xile Hu is Professor of Chemistry at the Swiss Federal Institute of Technology in Lausanne (EPFL). He is honored for his impressive scientific career and outstanding research on the fundamental understanding of catalysis. more