12-Jun-2018 - Université Libre de Bruxelles

Does nanoconfinement affect the interaction between two materials placed in contact?

Scientists show that is it possible to estimate how nanoconfinement affects the number of contacts formed by two materials placed in intimate contact and, hence, the interfacial interactions.

They considered wafers of silicon, as those largely used in microelectronics, coated by thin polymer layers of different thickness. The currently used approximate methods predict that the interaction between the two materials does not depend on the thickness of the polymer layer. On the contrary, the team of the Université libre de Bruxelles lead by Simone Napolitano, showed that size does matter. Molecules at the interface of thinner films form less contacts with the silicon wafer, because the van der Waals-forces, depending on the dimension of the objects involved, are weaker. The method used permitted to verify a striking correlation between the intensity of the vdW forces and the number of contacts.

This result shows that the current way we think at interfaces is not valid. In addition to the huge impact at the level of fundamental science, the results of the researchers of ULB could be exploited on a large number of applications. Since almost a decade, several research groups have shown that properties of many thin coatings - such as flow, the ability to retain or be repel water, the velocity of formation of crystals - depend on the number of contacts between the film and its supporting substrate. Till now, to modify this number it was necessary to change the type of molecules at the interface, often involving complex chemical reactions. The findings of Simavilla et al show that it is possible to tailor the performance of nanomaterials by simply changing their dimensions. Or even without! The research team of ULB has, in fact, also shown that placing a different material on top of the polymer layer in contact with the substrate, affects in a controllable way the vdW forces at the interface between polymer of given thickness and the substrate. This method, hence, allows controlling the polymer layer without touching it, as by using a remote control.

Facts, background information, dossiers
More about Université Libre de Bruxelles
  • News

    Molecules move faster on a rough terrain

    Roughness, the presence of irregularities on a surface, is commonly associated to slower motion and stickiness. This is true at different length scales: at human size (1 meter), it takes longer to walk along a path that goes up and down, rather than walking on a flat road. At the size of sm ... more

    Molecules move faster near sticky surfaces

    Molecules move faster as they get closer to adhesive surfaces, but this effect is not permanent. Such is the puzzling conclusion of a study published in Physical Review Letters, carried out by Simone Napolitano and his colleagues in the Laboratory of Polymers and Soft Matter Dynamics at the ... more

    The Nobel Prize in Physics 2013: How particles acquire mass

    The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2013 to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was conf ... more