My watch list
my.chemeurope.com  
Login  

THz spectroscopy could help Explain water's anomalies

29-Jun-2018

Hamm

Liquid water sustains life on earth, but its physical properties remain mysterious among scientific researchers. Recently, a team of Swiss researchers used existing THz spectroscopy techniques to measure liquid water's hydrogen bonding. Future efforts with this technique could one day help explain water's peculiar properties. The team reports their findings in The Journal of Chemical Physics. This image shows a Dipolar Lennard-Jones sphere solvated in water.

Liquid water sustains life on earth, but its physical properties remain mysterious among scientific researchers. Recently, a team of Swiss researchers used existing THz spectroscopy techniques to measure liquid water's hydrogen bonding. Future efforts with this technique could one day help explain water's peculiar properties.

"What makes this paper special is the aspect of THz spectroscopy of a liquid. In the THz range, we make spectroscopy explicitly of the intermolecular degrees of freedom of the system in the study, to contrast it to intramolecular degrees of freedom," said Peter Hamm, an author on the paper. "With THz spectroscopy, we can very directly look at the hydrogen bonding between various water molecules."

Researchers use spectroscopy to measure the interaction of matter with light and infer something's physical composition. In this experiment, the researchers excited a dye molecule dissolved in water with an ultrashort visible laser pulse, changing its charge distribution. Then, a THz pulse measured the response of the surrounding water molecules as a function of the time after that excitation process.

THz spectroscopy, which is relatively low frequency, enables researchers to examine the forces that exist between water molecules. Observing these intermolecular forces could help researchers understand water's anomalies, because hydrogen bonding in liquid water molecules make up many of water's unexpected properties, like its unusual density maximum at 4 degrees Celsius.

"The response we found in the THz frequency range was surprisingly slow. Water is typically considered to be a very fast solvent with a response in the subpicosecond range, but we found a timescale around 10 picoseconds in the THz," Hamm said. They attributed the slow timescale to the collective nature of the water response that was probed using THz spectroscopy.

Hamm clarified that researchers have been using THz spectroscopy for more than 20 years and cautioned optimism about the results. "The outcome often has been a bit disappointing because the THz spectra of liquids like water are extremely broad and blurred, and it's very hard to extract information out of that," he said. Time-resolved techniques, like in this study, might overcome that limitation.

Next, the researchers plan to use their method to look at water's structure and dynamics when it's still liquid, but below the freezing point. Hamm explained, "The special properties of water become significantly more pronounced if one goes to temperatures below the freezing point."

Facts, background information, dossiers
  • terra-hertz spectroscopy
  • Lennard-Jones spheres
More about Universität Zürich
  • News

    Trust in Science and Research Remains High

    The Swiss population’s trust in science and research is high to very high. As the Science Barometer Switzerland 2019 study shows, people in Switzerland have a positive attitude towards science and are keen to receive information about research, with climate and energy considered the most im ... more

    Recycling carbon dioxide from the ocean

    Paper, tin cans, glass - the world recycles as much as possible. So why not declare the greenhouse gas carbon dioxide (CO2) a recycling product as well? Liquid fuels based on carbon will continue to play an important role in the future - despite international efforts to reduce them. So it s ... more

    Researchers Observe Slowest Atom Decay Ever Measured

    The XENON1T detector is mainly used to detect dark matter particles deep underground. But a research team led by Zurich physicists, among others, has now managed to observe an extremely rare process using the detector – the decay of the Xenon-124 atom, which has an enormously long half-life ... more

More about American Institute of Physics
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE