My watch list
my.chemeurope.com  
Login  

MOFs can sense and sort troublesome gases

12-Apr-2019

2019 KAUST

This electrode is used for collecting the sensing properties of MOFs.

From astronauts and submariners to miners and rescue workers, people who operate in small enclosed spaces need good air quality to work safely and effectively. Electronic sensors now developed by a KAUST team can simultaneously detect at least three critical parameters that are important to monitor to ensure human comfort and safety.

These new sensors use fluorinated metal-organic frameworks (MOFs) as the sensing layer. MOFs are porous materials comprising a regular array of metal atoms held together by small organic-molecule linkers to form a repeating cage-like structure. KAUST's Mohamed Eddaoudi, who led the two studies of the sensor's efficacy, explains that by altering the metal and organic components, MOFs can be tuned for applications ranging from gas separation and storage to catalysis and sensing.

"Many people have attempted to develop simple, efficient, low-cost SO2, CO2 and H2O sensors without success," say researchers Mohamed Rachid Tchalala, Youssef Belmabkhout and Prashant Bhatt, all from Eddoudi's lab.

The approach taken by Eddaoudi's group was to develop a fluorinated MOF, which Belmabkhout and Tchalala tested as sensor materials for these gases. Testing of these state-of-the-art materials was in collaboration with Khaled Nabil Salama and his team.

The first study shows how the sensor can measure the concentration of carbon dioxide and the level of humidity in the air. While the second study of the same fluorinated MOFs shows it can detect the harmful and corrosive gas sulfur dioxide, or even selectively remove it from powerplant flue gas.

"Traces of SO2 are invariably present in the flue gas produced by factories and powerplants, and SO2 can poison materials developed to trap CO2 for carbon capture and storage," say Belmabkhout and Bhatt. "AlFFIVE-1-Ni can soak up SO2 with an affinity 66 times higher than for CO2, while showing good stability to SO2 exposure."

The MOFs could also be used with two simple, low-cost high-sensitivity sensor platforms. Quartz crystal microbalance (QCM) sensors that are coated with a thin film of either MOF detected the change in mass with the absorption of SO2, or water and CO2. Similarly, MOF-coated interdigitated electrode sensors detected a change in electronic properties with the absorption of water and CO2.

Both sensor platforms, the team showed, could monitor moisture and CO2 levels under real atmospheric conditions. "The signal is calibrated against CO2 concentration, humidity level and mixtures of both," Tchalala explains. A QCM-based sensor could also detect SO2 in the air at levels of just 25 parts per million.

Facts, background information, dossiers
More about King Abdullah University of Science and Technology
  • News

    Bionic catalysts to produce clean energy

    Mixing microbes with carbon nanomaterials could help the transition to renewable energy. KAUST research shows microbes and nanomaterials can be used together to form a biohybrid material that performs well as an electrocatalyst. The material could be used in the solar-powered production of ... more

    Probing water's skin

    From the wind-whipped surface of the open ocean, to trillions of tiny water drops in clouds, the air-water interface--water's skin-- is the site for crucial natural processes, including ocean-atmosphere exchange and cloud acidification. The air-water interface has even been postulated as th ... more

    Crystals that clean natural gas

    Removing the troublesome impurities of hydrogen sulfide (H2S) and carbon dioxide (CO2) from natural gas could become simpler and more effective using a metal-organic framework (MOF) developed at KAUST. Upgrading natural gas in this way could help Saudi Arabia to make greater and cleaner use ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE