My watch list
my.chemeurope.com  
Login  

Expanding the temperature range of lithium-ion batteries

24-Jun-2019

Electric cars struggle with extreme temperatures, mainly because of impacts on the electrolyte solutions in their lithium-ion batteries. Now, researchers have developed new electrolytes containing multiple additives that work better over a wide temperature range.

Lithium-ion batteries are widely used in cell phones, laptop computers and electric vehicles. The electrolyte solutions in these batteries conduct ions between the negative electrode (anode) and positive electrode (cathode) to power the battery. An indispensable component of most of these solutions, ethylene carbonate helps create a protective layer, preventing further decomposition of electrolyte components when they interact with the anode. However, ethylene carbonate has a high melting point, which limits its performance at low temperatures. Wu Xu and colleagues showed previously that they could extend the temperature range of lithium-ion batteries by partially replacing ethylene carbonate with propylene carbonate and adding cesium hexafluorophosphate. But they wanted to improve the temperature range even further, so that lithium-ion batteries could perform well from -40 to 140 F.

The researchers tested the effects of five electrolyte additives on the performance of lithium-ion batteries within this temperature range. They identified an optimized combination of three compounds that they added to their previous electrolyte solution. This new combination caused the formation of highly conductive, uniform and robust protective layers on both the anode and the cathode. Batteries containing the optimized electrolyte had greatly enhanced discharging performance at -40 F and long-term cycling stability at 77 F, along with slightly improved cycling stability at 140 F.

Facts, background information, dossiers
More about American Chemical Society
  • News

    A chameleon-inspired smart skin changes color in the sun

    Some creatures, such as chameleons and neon tetra fish, can alter their colors to camouflage themselves, attract a mate or intimidate predators. Scientists have tried to replicate these abilities to make artificial "smart skins," but so far the materials haven't been robust. Now, researcher ... more

    Making polyurethane waste degradable gives its components a second life

    Polyurethane waste is piling up in landfills, but scientists have a possible solution: They have developed a method to make polyurethane degradable. Once the original product's useful life is over, the polymer can easily be dissolved into ingredients to make new products such as superglue. ... more

    Fungal compound deodorizes skunk smell

    Being sprayed by a skunk is no fun for people or their pets, and the strong, stinky secretions can serve as a nasty reminder of the wildlife encounter for days or weeks. Available "de-skunking" formulas often either don't work well or can irritate the skin and eyes. Now, researchers reporti ... more

  • Videos

    What Makes Rubber Rubbery?

    Reactions is looking at sports science today. Sports balls owe their reliability to an unusual polymer. Learn about the chemistry of rubber the all-star’s best friend! more

    Dragon's Blood Could Save Your Life

    This week Reactions is looking at chemistry in bizarre places that could save your life. The science within the blood of the Komodo dragon or in a horseshoe crab can help with antibiotic resistance. But it doesn't end there, so we're taking a closer look at other wild places in nature that ... more

    Why is Olive Oil Awesome?

    Whether you sop it up with bread or use it to boost your cooking, olive oil is awesome. But a lot of chemistry goes on in that bottle that can make or break a product. Take the “extra virgin” standard: Chemistry tells us that a higher free-fatty-acid content leads to a lower grade, less tas ... more

More about Pacific Northwest National Laboratory
  • News

    Rust never sleeps

    Like iron flowing through the blood stream, iron minerals course through the ground. These minerals are used to make steel and other metal alloys used in everything from cell phone components and cars to buildings, industrial equipment and infrastructure. Unfortunately, when exposed to oxyg ... more

    Technology clears way for ethanol-derived jet fuel

    ASTM International recently revised ASTM D7566 Annex A5 -- the Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons -- to add ethanol as an approved feedstock for producing alcohol-to-jet synthetic paraffinic kerosene (ATJ-SPK). The revision of ASTM D7566 Ann ... more

    New insights into nanocrystal growth in liquid

    Many seashells, minerals, and semiconductor nanomaterials are made up of smaller crystals, which are assembled together like the pieces of a puzzle. Now, researchers have measured the forces that cause the crystals to assemble, revealing an orchestra of competing factors that researchers mi ... more

  • Videos

    Pulling Apart Titanium Oxide Surfaces

    Researchers slowly pull apart tiny bits of a titanium oxide mineral called rutile. The red dots near the top show the starting point. As the bottom half is pulled down, the top half stays attached by van der Waals forces -- until, that is, the pull becomes too great. The tips are about a th ... more

    From the Toilet to the Tank – Biofuels from Sewage

    What we flush can be converted into a biocrude oil with properties very similar to fossil fuels. Pacific Northwest National Laboratory researchers have worked out a process that does not require that sewage be dried before transforming it under heat and pressure to biocrude. Metro Vancouver ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE