08-Jul-2019 - Max-Planck-Institut für Dynamik und Selbstorganisation

How living matter self-organizes through chemical signals

Scientists show new mechanism of self-organization of living matter

Cells and microorganisms produce and consume all sorts of chemicals, from nutrients to signaling molecules. The same happens at the nanoscale inside cells themselves, where enzymes catalyze the production and consumption of the chemicals needed for life. In new work published in Physical Review Letters, Jaime Agudo-Canalejo and Ramin Golestanian, from the Department of Living Matter Physics at the Max Planck Institute of Dynamics and Self-Organization (MPIDS) and the University of Oxford, have found a generic mechanism by which such chemically-active particles, be it cells or enzymes or engineered synthetic colloids, can sense each other and ultimately self-organize in a multitude of ways.

Sensing each other through chemistry

Combining theory and computer simulations, the researchers studied the behaviour of mixtures of different particle species, which produce or consume a chemical signal to which they may in turn be attracted or repelled. Depending on the characteristics of each species, as well as on the ratios in which the species are mixed, they found that the particles will spontaneously aggregate together or separate in a myriad of different configurations. Mixtures of one producer species and one consumer species, for example, may completely separate into two distinct clusters under certain conditions, but under different conditions they may aggregate together into a cluster with a precisely defined composition. Even more spectacularly, these clusters may spontaneously start self-propelling in a comet-like fashion, with a close-packed group of producers being chased by a tail of consumers, or vice versa.

Breaking Newton’s third law

Indeed, according to Agudo-Canalejo and Golestanian, a peculiarity of these chemical-mediated interactions is that they effectively break Newton's third law of equal action and reaction: for example, a particle of one species may be attracted to a particle of the other species, but the second one may be repelled from the first one, so that one particle ends up chasing the other. These and other peculiarities are a direct consequence of the chemical activity that characterizes living matter, and are responsible for the richness of the self-organization phenomena observed, which would be absent in a non-living system.

“We expect that our minimal model may be applied to a variety of problems in biology and engineering. The self-propelling clusters observed, for example, may be relevant to understand mechanisms of collective migration of cells or microorganisms in heterogeneous tissues or colonies. On a much smaller scale inside the cell, the model may explain why enzymes that participate in common catalytic pathways tend to co-localize, an observation that until now had no generic explanation,” says Jaime Agudo-Canalejo, first author of the study. MPI director Ramin Golestanian adds: “We also envisage applications in the engineering of active materials, which may spontaneously assemble from synthetic particles that catalyze chemical reactions.”

Facts, background information, dossiers
  • self organisation
More about MPI für Dynamik und Selbstorganisation
  • News

    Attraction or Repulsion?

    Researchers at the Max Planck Institute for Dynamics and Self-Organization show that two microscopic non-equilibrium chemically active particles, such as enzymes or catalytically active colloids, can have a vast range of complex interactions reminiscent of human relationships, instead of ju ... more

    Small droplets grow differently

    Fine dew drops on spider webs, blades of grass, and even insects can lend them breathtaking beauty. And, examining them very closely, one recognises that the drops themselves form astonishingly regular and aesthetic patterns. For the first time, scientists at the Max Planck Institute for Dy ... more

    Turbulence around heat transport

    Not only in the Earth's mantle, in the atmosphere and in the outer layers of the Sun, but also in a chemical reactor, the exchange of heat may not be as effective as originally thought. There, because warm fluid rises and hence induces movement, the turbulent convection can be 100 billion t ... more

More about Max-Planck-Gesellschaft
  • News

    COVID-19 impacts on the Earth System

    COVID-19 immediately affects the health, economy and social well-being in our personal lives. Yet, the consequences on the entire Earth System, in particular the ones emerging from the widespread sheltering and lock-down measures, may be much more far-fetching and long-lasting. This has bee ... more

    Self-healing soft material outsmarts nature

    A soft material that heals itself instantaneously is now reality. A team of scientists at the Max Planck Institute for Intelligent Systems and at Pennsylvania State University tune the nanostructure of a new stretchable material in such a way that it now entirely recovers its structure and ... more

    Microscopic structures could further improve perovskite solar cells

    Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber fro ... more