My watch list
my.chemeurope.com  
Login  

Playfully discover atom manipulation

Online simulation game makes graphene research available to the public

10-Jul-2019

© Toma Susi/University of Vienna

An electron beam focused on a carbon atom next to a silicon impurity atom within the curved wall of a single-walled carbon nanotube can controllably make it jump to where the beam was placed.

© Toma Susi/University of Vienna

A screenshot of the instructions of the Atom Tractor Beam simulation game.

The team of Toma Susi at the University of Vienna uses a state-of-the-art electron microscope, the UltraSTEM, to manipulate strongly bound materials with atomic precision. Since the instruments used are fully computerized, it is possible to show in a simulation how researchers actually use them. This allows for compelling and largely realistic presentations of the most recent research in materials science. A simulation game on display at the Vienna Technical Museum in their special exhibition “Work & Production; thinking_forward_" is now also released online, together with the latest research advance of silicon impurity manipulation in single-walled carbon nanotubes.

Electron microscopes enable much greater resolution than optical microscopes. While optical microscopes image using visible light and thus can image objects down to a thousandth of a millimeter, electron microscopes use electron beams and can image much smaller objects, down to individual atoms, such as silicon impurities in the lattice of graphene. The Nion UltraSTEM scanning transmission electron microscope of the University of Vienna allows a 50,000,000x magnification, and is fully computer-controlled. Since image contrast depends on how much the electrons are scattered at each location – which in turn is determined by the charge of the nucleus, with silicon having more protons than carbon – we can directly see the where the impurities are located.

In addition to imaging, the focused electron beam of the microscope can be used to move the atoms. Each electron of this beam has a small chance of being scattered back by the nucleus of this targeted atom, giving the atom a small push in the opposite direction, as revealed by earlier research by the group. The electron beam scans across a graphene sample line by line, revealing the locations of the carbon atoms that make up the lattice, as well as the brighter silicon impurities. In practice, the electron beam is directed by moving a mouse cursor on a computer screen, which controls the microscope electronics. "So, in effect, we are playing a computer game in order to do our research", Susi explains. He continues. "I used to play many games when I was younger, and I notice that I am faster than some of my younger colleagues who are more used to touch screens!"

The simulation game has been part of the special exhibition “Work & Production; thinking_forward_" at the Vienna Technical Museum that opened last November, and also features typical samples used for the research as well as information on the underlying physics. Now, to reach an even larger audience, the team is launching a website with the same content, including a browser-based version of the simulation game called "Atom Tractor Beam". The name is inspired by the science fiction concept of an attractive beam of energy popularized by Star Trek. "The name is appropriate since the silicon impurities move to the location where the cursor is pointed, as if attracted by the electron beam", Susi concludes.

Concurrently with the launch of the website, the team has reported their latest research advance in atom manipulation in an article published by Advanced Functional Materials. In this work, the team demonstrates that silicon impurities, which have thus far been studied in graphene, can also be controllably manipulated in a new material, namely single-walled carbon nanotubes. Since these are confined one-dimensional structures, this advance may enable new kinds of tunable electronic devices.

You can find the simulation game under the link "News Website" in the box on the right side.

More about Universität Wien
  • News

    The fast dance of electron spins

    Metal complexes show a fascinating behavior in their interactions with light, which for example is utilized in organic light emitting diodes, solar cells, quantum computers, or even in cancer therapy. In many of these applications, the electron spin, a kind of inherent rotation of the elect ... more

    2000 atoms in two places at once

    The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna in collaboration with the University of Basel. Hot, complex molecules composed of nearly two thousand atoms were brought into a quantum superposition and m ... more

    From years to days: Artificial Intelligence speeds up photodynamics simulations

    The prediction of molecular reactions triggered by light is to date extremely time-consuming and therefore costly. A team led by Philipp Marquetand from the Faculty of Chemistry at the University of Vienna has now presented a method using artificial neural networks that drastically accelera ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE