My watch list
my.chemeurope.com  
Login  

Chemists produce simple fluorescent surfactants

Compounds show promise for use in medicine, manufacturing

07-Aug-2019

Illustration by Ashleigh Smith McWilliams/Rice University

Rice University chemists have produced an array of fluorescent surfactants for imaging, biomedical and manufacturing applications.

Laboratories use surfactants to separate things, and fluorescent dyes to see things. Rice University chemists have combined the two to simplify life for scientists everywhere.

The Wiess School of Natural Sciences lab of chemist Angel Martí introduced a lineup of eight fluorescent surfactants in Pure and Applied Chemistry. They're examples of what he believes will be a modular set of fluorescent surfactants for labs and industry.

Martí and Rice graduate student and lead author Ashleigh Smith McWilliams developed the compounds primarily to capture images of single nanotubes or cells as simply as possible.

"We can stain cells or carbon nanotubes with these surfactants," Martí said. "They stick to cells or nanotubes and now you can use fluorescent microscopy to visualize them."

Soaps and detergents are common surfactants. They are two-part molecules with water-attracting heads and water-avoiding tails. Put enough of them in water and they will form micelles, with the heads facing outward and the tails inward. (Similar structures form the protective, porous barriers around cells.)

McWilliams produced the surfactants by reacting fluorescent dyes with alcohol-based, nonpolar tails, which made the heads glow when triggered by visible light. When the compounds wrap around carbon nanotubes in a solution, they not only keep the nanotubes from aggregating but make them far easier to see under a microscope.

"Surfactants have been used for many different applications for years, but we've made them special by converting them to image things you can generally not see," Martí said.

"Fluorescent surfactants have been studied before, but the novel part of ours is their versatility and relative simplicity," McWilliams said. "We use common dyes and plan to produce these surfactants with an array of colors and fluorescent properties for specific applications."

Those could be far-reaching, Martí said.

"These can go well beyond imaging applications," he said. "For instance, clothing manufacturers use surfactants and dyes. In theory, they could combine those; instead of using two different chemicals, they could use one.

"I can also envision using these for water purification, where surfactant dyes can be tuned to trap pollutants and destroy them using visible light," Martí said. "For biomedical applications, they can be tuned to target specific cells and kill only those you radiate with light. That would allow for a localized way to treat, say, skin cancer."

Martí said his lab was able to confirm fluorescent surfactants are the real deal. "We were able to characterize the critical micelle concentration, the concentration at which micelles start forming," he said. "So we are 100% sure these molecules are surfactants."

Facts, background information, dossiers
More about Rice University
  • News

    Chemists show it's hip to be square

    Rice University chemists want to make a point: Nitrogen atoms are for squares. The nitrogens are the point. The squares are the frames that carry them. These molecules are called azetidines, and they can be used as building blocks in drug design. The Rice lab of chemist László Kürti introdu ... more

    Oddball edge wins nanotube faceoff

    When is a circle less stable than a jagged loop? Apparently when you're talking about carbon nanotubes. Rice University theoretical researchers have discovered that nanotubes with segregated sections of "zigzag" and "armchair" facets growing from a solid catalyst are far more energetically ... more

    Nanomaterial safety on a nano budget

    With a little practice, it doesn't take much more than 10 minutes, a couple of bags and a big bucket to keep nanomaterials in their place. The Rice University lab of chemist Andrew Barron works with bulk carbon nanotubes on a variety of projects. Years ago, members of the lab became concern ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE