My watch list  

'Resonance' raman spectroscopy with 1-nm resolution


Takashi Kumagai

Tip-enhanced resonance Raman scattering is measured by a silver tip fabricated by focused ion beam (FIB) milling. Localized surface plasmon (LSP) is excited by an excitation laser, which generates enhanced Raman scattering from ultrathin zinc oxide (ZnO) films grown on a single-crystal silver (Ag) surface.

Tip-enhanced Raman spectroscopy resolved "resonance" Raman scattering with 1-nm resolution in ultrathin zinc oxide films epitaxially grown on a single-crystal silver surface. Tip-enhanced "resonance" Raman scattering can be used to investigate a specific chemical structure at nanoscale and at the single-molecule level and provides a new approach for the atomic-scale optical characterization of local electronic states. This will be a powerful tool to study, local defects in low-dimensional materials and active sites of heterogeneous catalysis.

A research team at Fritz-Haber Institute in Berlin, headed by Dr. Takashi Kumagai, demonstrated tip-enhanced "resonance" Raman spectroscopy. Resonance Raman spectroscopy is a powerful tool to analyze a specific chemical structure at a high sensitivity, but its spatial resolution has been restricted to be a few hundred nm due to the diffraction limit. Extreme field confinement at a metal tip apex through localized surface plasmon excitation allows to break this limitation and now attain 1-nm resolution. Tip-enhanced Raman spectroscopy takes advantage of atomic resolution imaging of scanning probe microscopy and enhanced Raman scattering through localized surface plasmon excitation. The research team revealed tip-enhanced resonance Raman scattering in which both physical and chemical enhancement mechanisms are operative. The underlying process was examined by modifying the localized surface plasmon resonance in the scanning tunneling microscope junction and by recording different-thickness zinc oxide films that exhibit a slightly different electronic structure. In addition, the correlation between tip-enhanced resonance Raman scattering and local electronic states is resolved in combination with scanning tunneling spectroscopy that maps the local electronic state of the zinc oxide film. The results explicitly show that a confined electromagnetic field can interact with local electronic resonances at the (sub)nanometer scale.

Facts, background information, dossiers
More about Fritz-Haber-Institut
  • News

    Towards a new design paradigm for high-performance catalysts

    Mark Greiner and Travis Jones from the Max-Planck Institute for Chemical Energy Conversion and the Fritz-Haber Institute, along with a team of international researchers, have recently made a discovery that could transform the way chemicals are synthesized. The chemical industry relies on h ... more

    Scientists demonstrate the wavelike nature of van der Waals Forces

    Like the gravitational forces that are responsible for the attraction between the Earth and the moon as well as the dynamics of the entire solar system, there exist attractive forces between objects at the nanoscale. These are the so-called van der Waals forces, which are ubiquitous in natu ... more

    X-ray laser reveals chemical reaction

    What happens when a chemical bond is broken? That question was recently answered with the help of a so-called free electron x-ray laser, which makes it possible to follow in real time how bindings in a molecule are changed and broken. The study, published in Science, found, among other thin ... more

More about Japan Science and Technology Agency
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE