18-Oct-2019 - Universität Bayreuth

Always on beat: ultrashort flashes of light under optical control

Ultrashort laser pulses have enabled scientists and physicians to carry out high-precision material analyses and medical procedures. Physicists from the University of Bayreuth and the University of Göttingen have now discovered a new method for adjusting the extremely short time intervals between laser flashes with exceptional speed and precision. The intervals can be increased or decreased as needed, all at the push of a button. Potential applications range from laser spectroscopy to microscopy and materials processing. The researchers have now presented their latest findings in the journal Nature Photonics.

Laser pulses have long been utilized in research laboratories, industrial production, and medical therapies. In these applications it is often crucial that the pulses – also known as optical solitons – occur at certain intervals. Using a special high-speed measurement technique, the researchers have now been able to show how a short-pulse laser widely applied in research can be made to automatically generate pairs of light pulses separated by the desired interval. All that is required are small disturbances in the green optical "pump beam” (which generates the laser pulses) triggered by electric signals.

The new process centres on the targeted manipulation of solitons, wave packets that can occur in pairs in ultrashort laser pulses. "The resonance excitation and the short disturbance of soliton pairs trigger effects that can be used to specifically control ultrashort laser pulses. This opens up an exciting new area of research with a yet unforeseeable range of possible applications," said Prof. Dr. Georg Herink from Bayreuth, corresponding author of the new study. "At the right frequency, a tiny external modulation of the laser is all you need, and ultrashort laser pulses are set into reciprocal, resonant oscillation. Similar phenomena can be observed in water molecules heated in the microwave," added lead author Felix Kurtz from Göttingen.

The newly published findings show that in the future, ultra-short pulse lasers will not only be considered as a tool, but also remain a fascinating object of research.

Facts, background information, dossiers
More about Uni Bayreuth
  • News

    Miniature double glazing

    Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin ... more

    Light, strong, and tough: Researchers discover unique polymer fibres

    Strong and tough yet as light as a feather – materials with this exceptional combination of properties are urgently needed in many industrial sectors and in medicine, as well as being of great interest for scientific research. A research team from the University of Bayreuth has now develope ... more

    New catalyst: easy on resources, less expensive, and highly selective

    Chemists at the University of Bayreuth have developed a sustainable, inexpensive, and at the same time potent catalytic process: it requires no rare precious metals and enables the targeted production of many fine chemicals, natural products, and medical agents. This opens up a broad spectr ... more