22-Nov-2019 - Max-Planck-Institut für Polymerforschung

How graphene nanoparticles improve the resolution of microscopes

Small particles, big effects

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is limited by physical principles. Structures can only be imaged if they are separated by a distance greater than half the wavelength of light. With blue light, this corresponds to a distance of approximately 200 nanometers, i.e., 200 millionths of a millimeter.

This limit can be circumvented using superresolution microscopy. Today there are a number of different such approaches. In the type of superresolution microscopy applied here, fluorescent particles are excited by light and re-emit light at a slightly different wavelength, i.e. a slightly different color. The position of these fluorescent particles can be determined with higher precision than given by the wavelength of the light: If they are blinking randomly, two neighbouring particles typically do not light up simultaneously – this means that their signals do not overlap and thus the positions of the individual particles can be determined independently of each other, so that even at very small distances the particles can be imaged separately, i.e. "resolved". Researchers at the MPI-P have now shown that nanoparticles from graphene – so-called nanographenes, consisting of a carbon layer only one atom thick - have properties that are ideal for this special microscopy technique.

In the past, several fluorescent materials have been used for this type of microscopy, including dyes, so-called quantum dots, and fluorescent proteins. Nanographenes are as good as the best of these materials in terms of their optical properties. In addition to their excellent optical properties, nanographenes are non-toxic, very small, and, most notably and different from all other materials, their flashing frequency is robust and independent of their environment. This means that nanographene can be used in air, aqueous solutions and other solvents - making it a very versatile fluorophore. Nanographenes can further be readily modified so that they only adhere to certain interesting locations on a sample, e.g., a specific organelle in a cell.

"We have compared nanographene with the gold standard in this microscopy technique - the organic dye Alexa 647," says Prof. Mischa Bonn, director at the MPI-P. "We found that nanographene is as efficient as this dye, i.e., it can convert as much of the incident light into a different color, but doesn’t require a specifically tailored environment that Alexa requires.“

To test the nanographene produced at the Max Planck Institute for Polymer Research, the scientists collaborated with Prof. Christoph Cremer's group at the Institute of Molecular Biology (IMB) in Mainz. The researchers prepared a glass surface with nanometer-sized fissures. Here, nanographene particles were applied, which were mainly deposited in the gaps. In comparison with conventional microscopy, they were able to show that the resolution could be increased by a factor of 10 using graphene nanoparticles.

The scientists see the development of their material as an important step in superresolution microscopy.

Facts, background information, dossiers
More about MPI für Polymerforschung
  • News

    Water splitting observed on the nanometer scale

    Whether as a fuel or in energy storage: hydrogen is being traded as the energy carrier of the future. To date, existing methodologies have not been able to elucidate how exactly the electrochemical process of water splitting into hydrogen and oxygen takes place at the molecular scale on a c ... more

    Miniature double glazing

    Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin ... more

    New form of glass through molecular entanglement

    Physicists at the University of Vienna in collaboration with the Max Planck Institute for Polymer Research have discovered a new type of glass formed by long, cyclic molecules. The scientists successfully demonstrated that by making parts of the rings more mobile, the rings become more stro ... more

More about Max-Planck-Gesellschaft
  • News

    A chemical factory for all cases

    In the future, bottlenecks in the supply of medicines could be more easily eliminated. An automated machine for radial synthesis developed by chemists at the Max Planck Institute of Colloids and Interfaces will enable the flexible production of medical agents and other chemical products. Th ... more

    Shaking off the correlated-electron traffic jam

    An international team of researchers from Switzerland, Germany, the USA and Great Britain has uncovered an anomalous metallic behavior in an otherwise insulating ceramic material. The team used ultrashort light pulses with a wide range of colors to watch what happens when the insulating qua ... more

    Sustainable use of CO2 using a modified bacterium

    A team of scientists from the Max Planck Institute of Molecular Plant Physiology in Potsdam-Golm, led by Dr. Arren Bar-Even, has succeeded in reprogramming the diet of the bacterium E. coli in such a way that it can use formic acid or methanol as its sole source of nutrition. These simple o ... more