19-Dec-2019 - Friedrich-Alexander-Universität Erlangen-Nürnberg

Removing glyphosate from water

The power of attraction

Glyphosate is not only one of the most widely-used herbicides in the world, but also one of the most controversial chemical compounds, as it is suspected of being carcinogenic. In a study published in the journal Nature Sustainability, a team of researchers from FAU have demonstrated how glyphosate can be removed from water using a straightforward technique.

The FAU team led by the material scientist Prof. Marcus Halik from the Interdisciplinary Centre for Nanostructured Films (IZNF) and physicist Prof. Dirk Zahn from the Computer Chemistry Centre (CCC), and the team led by Dr. Leena Banspach from the Bavarian Health and Food Safety Authority (LGL) use the chemical structure of glyphosate, which interacts strongly with oxidic surfaces, in order to bind the herbicide to magnetic iron oxide particles. The particles can then be filtered out of the water using a magnet.

Tests in the laboratory have demonstrated just how effective this method is. In a wide variety of different samples, researchers succeeded in reducing levels of glyphosate to the strict limit of 0.1 microgrammes/litre dictated by the European Drinking Water Directive, and in many cases even to remove the glyphosate to such an extent that it could no longer be detected.

The high degree of efficiency was not only observed in experiments in the laboratory, however. The group led by Prof. Dirk Zahn succeeded in using molecular dynamics simulations to demonstrate the theory behind the results: compared to other substances dissolved in water, glyphosate binds particularly well to iron oxide particles.

The predicted selectivity was then confirmed in experiments conducted on water samples taken from the Dechsendorfer Weiher – a lake near Erlangen – which contained a low concentration of glyphosate (~ 0,6 microgrammes/litre) as well as other organic contaminations. After adding iron oxide particles to the water and removing them using magnets, the water from the Dechensdorfer Weiher had the quality of drinking water, at least with respect to glyphosate.

As iron oxide particles are available at a low cost and the magnetic particles can be used several times over, the procedure is both ecologically sustainable and economically feasible. The objective is not to use iron oxide particles on a major scale, however, but rather to develop a toolkit which can be used to tackle extreme concentrations on a local level quickly and at a low cost. 700,000 tonnes of glyphosate are still being produced, stored and used every year, entailing a significant potential for risk if handled inappropriately.

Facts, background information, dossiers
  • magnetic particles
More about Friedrich-Alexander-Universität Erlangen-Nürnberg
  • News

    Carbyne – an unusual form of carbon

    Which photophysical properties does carbyne have? This was the subject of research carried out by scientists at FAU, the University of Alberta, Canada, and the Ecole Polytechnique Fédérale de Lausanne in Switzerland, which has led to a greater understanding of the properties of this unusual ... more

    House cleaning on the nanoscale

    A team of scientists at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) has developed a novel mechanical cleaning method for surfaces on the nanoscale. The technique successfully removes even the tiniest contaminants down to the atomic scale, achieving an unprecedented level of clea ... more

    Coming a step closer to the dream of nanotechnology

    Synthesising single-wall carbon nanotubes (SWCNTs) is one of the greatest challenges faced by materials science. They can be synthesised using precursor molecules, so-called seeds, which determine growth. However, this synthesis has not been well researched up to now. Researchers at FAU hav ... more