17-Feb-2020 - Ruhr-Universität Bochum (RUB)

Catalyst deposition on fragile chips

Electrocatalysts can help to obtain chemicals from renewable raw materials or to use alternative energy sources. But testing new catalysts brings challenges.

Researchers at the Ruhr-Universität Bochum (RUB) and the University of Duisburg-Essen have developed a new method of depositing catalyst particles to tiny electrodes. It is inexpensive, simple and quick to perform. In order to characterize catalysts and test their potential for various applications, researchers have to fix the particles to electrodes so that they can then be examined, for example, with transmission electron microscopy.

The new method is described by Dr. Tsvetan Tarnev and Professor Wolfgang Schuhmann from the Center for Electrochemistry at RUB with Steffen Cychy and Professor Martin Muhler, RUB Chair of Technical Chemistry, as well as Professor Corina Andronescu, University of Duisburg-Essen, and Dr. Yen-Ting Chen from the Bochum Center for Solvation Science in the journal Angewandte Chemie, published online on 20 January 2020.

Wafer-thin electrodes

In transmission electron microscopy, TEM for short, a thin electron beam is sent through the sample to observe the electrochemical processes taking place at an electrode. In order for the beam to penetrate the structures, all sample components must be very thin. The diameter of the electrode to which the catalyst is applied is therefore only ten micrometers.

Depositing catalyst particles drop by drop

With earlier methods, the catalyst particles were either distributed evenly throughout the sample, i.e. even where they were not needed, or methods were used that could damage the material. Both disadvantages are eliminated with the new method, which is based on scanning electrochemical cell microscopy. The researchers fill a glass capillary with a liquid containing the catalyst particles. They then approach the capillary to the electrode onto which the particles are to be deposited. A tiny drop of the particle liquid hangs at the lower opening of the capillary.

The researchers approach the capillary to the electrode until the drop of liquid comes into contact with the electrode and closes an electrical circuit. This automatically stops the approach, preventing damage to the material. The scientists then retract the capillary, but the drop of liquid remains on the electrode. This step can be repeated as often as required. Finally, the researchers evaporate the solvent so that only the catalyst particles remain, which are now fixed to the electrode.

Suitable for many catalyst materials

“Once the methodology is established, it offers a clean, easy-to-use and variable way of applying and measuring a large number of different catalyst materials stably and reproducibly on liquid cell TEM chips,” says Wolfgang Schuhmann.

Facts, background information, dossiers
More about Ruhr-Universität Bochum
  • News

    New energy conversion layer for biosolar cells

    Photosynthetic proteins can convert light energy into other forms of energy. Researchers want to make this technology usable for the industrial production of fuels, for example. A research team from the Ruhr-Universität Bochum (RUB), together with colleagues from Lisbon, has produced a semi ... more

    Catalytic activity of individual cobalt oxide nanoparticles determined

    Analyzing nanoparticles individually is a challenge precisely because they are so small. A new technique using electron microscopy and a robotic arm could make the process much easier. Precious metal-free nanoparticles could serve as powerful catalysts in the future, for example for hydroge ... more

    How water helps the substrate into the enzyme

    An international research team has investigated water molecules in a tiny cage – and discovered previously unknown properties. Researchers from Bochum and Berkeley have investigated why cages can increase the catalytic activity of enclosed molecules. Using terahertz spectroscopy and complex ... more

More about Uni Duisburg-Essen
  • News

    Research on Semiconductors: Light Weakens Magic Nano Clusters

    They are known as "magic sized nano clusters" because they have special properties: The particles consist of only a few atoms, but since they are arranged in a special crystal structure, they are extremely stable. Unless you expose them to light. Scientists from the Center for Nanointegrati ... more

    Catalyst Material from the Laser Lab

    In catalysts, more surface area usually equals more activity. And hardly anything offers more surface than structures made of nanoparticles. Scientists from the Center for Nanointegration (CENIDE) at the UDE have shown that it makes sense in economic terms to produce catalytically highly ac ... more

    3D Laser Printing in Color

    Ventilation grilles in aircraft cabins, serial components in cars and lately even mascara brushes: The industry has been using laser-based 3D printers for several years now when precision and good mechanical properties are required. However, these printers are expensive, large and print onl ... more