20-Apr-2020 - Universität Basel

Flatter graphene, faster electrons

Bumps on a road slow down our pace, so do corrugations in graphene to travelling electrons. By flattening the corrugations out, we help electrons move effectively faster through a graphene sheet.

Limits because of microscopic distortions

The sample quality of graphene has been improved significantly since its discovery. One factor that limited further improvements has not been investigated directly so far, namely corrugations in the graphene sheet, i.e. microscopic distortions that form even when placed on atomically flat surfaces. Such corrugations can scatter the electrons when moving through an electronic device.

The team of professor Christian Schönenberger of the Swiss Nanoscience Institute and Department of Physics at the University of Basel has developed a technique to pull the graphene sheet on two opposite sides and thereby flattening and smoothing it. "It is similar to pulling on a piece of crumpled paper which irons out wrinkles and folds», says Dr. Lujun Wang, first author of the study. "After this process, the electrons travel effectively faster through the graphene sheet, their "mobility" increases, demonstrating an improved sample quality", his supervisor Dr. Andreas Baumgartner adds.

These findings not only help us to further understand the electron transport in graphene but also provide instructions for studying other two-dimensional materials.

Facts, background information, dossiers
More about Universität Basel
  • News

    Porous nitrogen-doped graphene ribbons for future electronics

    A team of physicists and chemists has produced the first porous graphene ribbons in which specific carbon atoms in the crystal lattice are replaced with nitrogen atoms. These ribbons have semiconducting properties that make them attractive for applications in electronics and quantum computi ... more

    Perturbation-free studies of single molecules

    Researchers of the University of Basel have developed a new method with which individual isolated molecules can be studied precisely – without destroying the molecule or even influencing its quantum state. This highly sensitive technique for probing molecules is widely applicable and paves ... more

    2D materials: arrangement of atoms measured in silicene

    Silicene consists of a single layer of silicon atoms. In contrast to the ultra-flat material graphene, which is made of carbon, silicene shows surface irregularities that influence its electronic properties. Now, physicists from the University of Basel have been able to precisely determine ... more