22-Apr-2020 - Technische Universität Wien

New preparation processes for super-plastics

Water replaces toxins: Green production of plastics using hydrothermal synthesis

Although organic plastics are not harmful to the environment themselves, toxic substances are often used during their synthesis. TU Wien shows - there is another way.

Many materials that we use every day are not sustainable. Some are harmful to plants or animals, others contain rare elements that will not always be as readily available as they are today. A great hope for the future is to achieve different material properties by using novel organic molecules. Organic high-performance materials containing only common elements such as carbon, hydrogen or oxygen could solve our resource problem - but their preparation is usually anything but environmentally friendly. Often very toxic substances are used during the synthesis of such materials, even if the end product itself is non-toxic.

At TU Wien a different approach is taken: In the research group for organic high-performance materials, led by Prof. Miriam Unterlass at the Faculty of Technical Chemistry at TU Wien, a completely different synthetic method is employed. Instead of toxic additives, only hot water is used. A decisive breakthrough has now been achieved: two important classes of polymers could be generated using the new process - an important step towards industrial application of the new method.

High pressure and high temperature

"We are investigating so-called hydrothermal synthetic processes," says Miriam Unterlass. "We are working at high pressure and high temperature in the order of 17 bar and 200 °C. As it turns out, under such extreme conditions it is possible to avoid using toxic solvents that would otherwise be necessary for producing these polymers. The term "green chemistry" refers to those methods that allow to render not only the end products but also the synthetic processes in the chemical industry more environmentally friendly.

Already several years ago, Miriam Unterlass achieved first positive results with this technology. "We succeeded, for example, in producing organic dyes, or polyimides - plastics that are indispensable in the aviation and electronics industries. This also generated a great deal of interest from the industry," says Unterlass. "But now we have taken an important step forward: We were able to synthesize different polymer examples from two highly interesting classes of plastics - polybenzimidazoles and pyrron polymers."

New preparation processes for super-plastics

Polybenzimidazoles are, for example, nowadays used as membranes in fuel cells since they are acid-resistant even at high temperatures and can also conduct protons. Polybenzimidazole fibers are also found in fireproof clothing such as the protective suits of firefighters. " That already shows that they are real super-plastics," says Unterlass.

Pyrron polymers, on the other hand, have particularly interesting electronic properties in addition to their excellent stability. Therefore, they are suitable for applications such as field-effect transistors or as powerful and highly resistant electrode material in batteries.

"The fact that these polymers can be prepared using our hydrothermal process is remarkable since under usual conditions the chemical reactions for generating these plastics are sensitive to water", says Miriam Unterlass. "This shows how promising our method is for a wide range of applications."

The new fabrication method for the two new material classes has already been patented, with the assistance of the research and transfer support of the TU Wien. The electrochemical analysis of the products was carried out in cooperation with Imperial College London.

  • M. J. Taublaender, S. Mezzavilla, S. Thiele, F. Glöcklhofer and M. M. Unterlass; "Hydrothermal Generation of Conjugated Polymers on the Example of Pyrrone Polymers and Polybenzimidazoles"; Angew. Chem. Int. Ed.; 2020, accepted.
Facts, background information, dossiers
More about TU Wien
  • News

    How can you perforate an atomic layer of material and leave the one underneath intact?

    Nobody can shoot a pistol bullet through a banana in such a way that the skin is perforated but the banana remains intact. However, on the level of individual atomic layers, such a feat has now been achieved - a nano-structuring method has been developed at TU Wien (Vienna), with which cert ... more

    How to teach gold to tell left from right

    Nanometer-sized gold particles consisting of only a few atoms can be used as catalysts for important chemical reactions. Noelia Barrabés from the Institute of Materials Chemistry at TU Wien has been researching new methods of adapting and precisely controlling such tiny gold clusters for ye ... more

    How to Gently Caress Atoms: A single oxygen atom is used as a highly sensitive sensor

    Oxygen is highly reactive. It accumulates on many surfaces and determines their chemical behavior. At the Vienna University of Technology, scientists study the interaction between oxygen and metal oxide surfaces, which play an important role in many technical applications - from chemical se ... more

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. more


    The coating machine Noreia was built at TU Wien. This time-lapse video shows the construction process. more

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... more