11-Jun-2020 - Johann Wolfgang Goethe-Universität Frankfurt (Main)

Snapshot of exploding oxygen

New experimental technique with reaction microscope allows “X-ray” of individual molecules

For more than 200 years, we have been using X-rays to look inside matter, and progressing to ever smaller structures – from crystals to nanoparticles. Now, within the framework of a larger international collaboration on the X-ray laser European XFEL in Schenefeld near Hamburg, physicists at Goethe University have achieved a qualitative leap forward: using a new experimental technique, they have been able to “X-ray” molecules such as oxygen and view their motion in the microcosm for the first time.

“The smaller the particle, the bigger the hammer.” This rule from particle physics, which looks inside the interior of atomic nuclei using gigantic accelerators, also applies to this research. In order to “X-ray” a two-atom molecule such as oxygen, an extremely powerful and ultra-short X-ray pulse is required. This was provided by the European XFEL which started operations in 2017 and is one of the the strongest X-ray source in the world

In order to expose individual molecules, a new X-ray technique is also needed: with the aid of the extremely powerful laser pulse the molecule is quickly robbed of two firmly bound electrons. This leads to the creation of two positively charged ions that fly apart from each other abruptly due to the electrical repulsion. Simultaneously, the fact that electrons also behave like waves is used to advantage. “You can think of it like a sonar,” explains project manager Professor Till Jahnke from the Institute for Nuclear Physics. “The electron wave is scattered by the molecular structure during the explosion, and we recorded the resulting diffraction pattern. We were therefore able to essentially X-ray the molecule from within, and observe it in several steps during its break-up.”

For this technique, known as “electron diffraction imaging”, physicists at the Institute for Nuclear Physics spent several years further developing the COLTRIMS technique, which was conceived there (and is often referred to as a “reaction microscope”). Under the supervision of Dr Markus Schöffler, a corresponding apparatus was modified for the requirements of the European XFEL in advance, and designed and realised in the course of a doctoral thesis by Gregor Kastirke. No simple task, as Till Jahnke observes: “If I had to design a spaceship in order to safely fly to the moon and back, I would definitely want Gregor in my team. I am very impressed by what he accomplished here.”

The result, which was published in the current issue of the Physical Review X, provides the first evidence that this experimental method works. In the future, photochemical reactions of individual molecules can be studied using these images with their high temporal resolution. For example, it should be possible to observe the reaction of a medium-sized molecule to UV rays in real time. In addition, these are the first measurement results to be published since the start of operations of the Small Quantum Systems (SQS) experiment station at the European XFEL at the end of 2018.

Facts, background information, dossiers
More about Uni Frankfurt am Main
  • News

    How particulate matter arises from pollutant gases

    When winter smog takes over Asian mega-cities, more particulate matter is measured in the streets than expected. An international team, including researchers from Goethe University Frankfurt, as well as the universities in Vienna and Innsbruck, has now discovered that nitric acid and ammoni ... more

    First machine-generated chemistry book published

    Springer Nature published its first machine-generated book, compiled using an algorithm developed by researchers from Goethe University. This collaboration broke new ground with the first machine-generated book to be published by a scholarly publisher.  The book is available as a free downl ... more

    Inert Nitrogen Forced to React with Itself

    Direct coupling of two molecules of nitrogen: chemists from Würzburg and Frankfurt have achieved what was thought to be impossible. This new reaction is reported in Science magazine and opens new possibilities for one of the most inert molecules on earth. Constituting over 78 % of the air ... more

More about European XFEL
  • News

    Rigid bonds enable new data storage technology

    Phase-change materials are used in the latest generation of smartphones enabling higher storage densities and energy efficiency. Data is recorded by switching between glassy and crystalline material states by applying a heat pulse. However, to date it has not been possible to study what hap ... more

    European XFEL starts operation phase

    The world’s largest X-ray laser, the European XFEL, has now entered its operation phase. Over the past few weeks, engineers and scientists at European XFEL and DESY have been working to ensure that the experiment stations are equipped with instruments and that the X-ray beam meets the param ... more

    Particle accelerator for the European XFEL X-ray laser operational

    The international X-ray laser European XFEL has reached one of its final major milestones on the way to scientific user operation. DESY has successfully commissioned the particle accelerator, which drives the X-ray laser along its full length.It is the world’s largest superconducting linear ... more