18-Nov-2020 - Friedrich-Schiller-Universität Jena

Novel glass materials made from organic and inorganic components

Research team from Jena and Cambridge develops glass materials with novel combinations of properties

Linkages between organic and inorganic materials are a common phenomenon in nature, e.g., in the construction of bones and skeletal structures. They often enable combinations of properties that could not be achieved with just one type of material. In technological material development, however, these so-called hybrid materials still represent a major challenge today.

A new class of hybrid glass materials

Researchers from the Universities of Jena (Germany) and Cambridge (GB) have now succeeded in creating a new class of hybrid glass materials that combine organic and inorganic components. To do this, the scientists use special material combinations in which chemical bonds between organometallic and inorganic glasses can be generated. They included materials composed of organometallic networks – so-called metal-organic frameworks (MOFs) – which have recently been experiencing rapidly increasing research interest. This is primarily because their framework structures can be created in a targeted manner, from the length scale of individual molecules up to a few nanometers. This achieves a control of porosity which can be adapted to a large number of applications, both in terms of the size of the pores and their permeability, and in terms of the chemical properties prevailing on the pore surfaces. For example, separating membranes or storage devices for gases and liquids, supports for catalysts or new types of components for electrical energy storage devices can be designed.

“The chemical design of MOF materials follows a modular principle, according to which inorganic nodes are connected to one another via organic molecules to form a three-dimensional network. This results in an almost infinite variety of possible structures. A few of these structures can be converted into a glassy state by heat treatment. While crystalline MOF materials are typically synthesized in powder form, the liquid and glass states open up a wide range of processing options and potential shapes", explains Louis Longley from the University of Cambridge, UK.

Best of both worlds combined

“The combination of such MOF-derived glasses with classic inorganic glass materials could make it possible to combine the best of both worlds,” says Courtney Calahoo, a senior scientist at the Chair of Glass Chemistry at Friedrich Schiller University Jena, Germany. For example, composite glasses of this kind could lead to significantly improved mechanical properties by combining the impact and fracture toughness of plastics with the high hardness and rigidity of inorganic glasses. The decisive factor in ensuring that the materials involved are not simply mixed with one another is the creation of a contact area within which chemical bonds can form between the organometallic network and conventional glass. "Only in this way can really new properties be obtained, for example in electrical conductivity or mechanical resistance," explains Lothar Wondraczek, Professor of Glass Chemistry in Jena.

Facts, background information, dossiers
  • hybrid materials
  • material developments
  • glass
More about Uni Jena
  • News

    Intelligent nanomaterials for photonics

    2D materials – nanosheets with atomic thickness – have enormous potential for a wide variety of applications. For instance, combined with optical fibres, 2D materials can enable novel applications in the areas of sensors, non-linear optics, and quantum technologies. However, combining these ... more

    New storage battery more efficient and heat-resistant

    The share of energy from renewable sources is constantly on the rise in Germany. At the beginning of 2020, for the first time ever, renewable energy was able to cover more than half of the electricity consumed in Germany. But the more important renewable energy sources become, the more urge ... more

    Novel approach to the storage of solar energy

    Using the energy from the sun as efficiently as nature does and converting it into chemical energy could drastically reduce global CO2 emissions. A research team from the Leibniz Institute of Photonic Technology (Leibniz IPHT) and the Friedrich Schiller University Jena has now come one step ... more

More about University of Cambridge
  • News

    Wireless device makes clean fuel from sunlight, CO₂ and water

    Researchers have developed a standalone device that converts sunlight, carbon dioxide and water into a carbon-neutral fuel, without requiring any additional components or electricity. The device, developed by a team from the University of Cambridge, is a significant step toward achieving ar ... more

    AI techniques used to improve battery health and safety

    Researchers have designed a machine learning method that can predict battery health with 10x higher accuracy than current industry standard, which could aid in the development of safer and more reliable batteries for electric vehicles and consumer electronics. The researchers, from Cambridg ... more

    Smog-eating graphene composite reduces atmospheric pollution

    Graphene Flagship partners the University of Bologna, Politecnico di Milano, CNR, NEST, Italcementi HeidelbergCement Group, the Israel Institute of Technology, Eindhoven University of Technology, and the University of Cambridge have developed a graphene-titania photocatalyst that degrades u ... more

  • Videos

    Graphene: A 2D materials revolution

    Graphene is a two-dimensional material made up of sheets of carbon atoms. With its combination of exceptional electrical, mechanical and thermal properties, graphene has the potential to revolutionise industries ranging from healthcare to electronics. more

    Where there’s muck there’s aluminium (if not brass)

    Technology developed in Cambridge at the Department of Chemical Engineering and Biotechnology lies at the heart of a commercial process that can turn toothpaste tubes and drinks pouches into both aluminium and fuel in just three minutes. The process recycles a form of packaging – plastic-al ... more

    Nanomaterials Up Close: Gum Arabic

    This alien glob is a piece of gum arabic from the hardened sap of the Acacia tree, most likely collected from a tree in Sudan. Rox Middleton, from the University of Cambridge, explains how the electron microscope has changed the way we are able to interact with objects at the nanoscale, all ... more