18-Jun-2021 - University of Minnesota

Researchers uncover unique properties of a promising new superconductor

Material could be used in future quantum computing applications

An international team of physicists led by the University of Minnesota has discovered that a unique superconducting metal is more resilient when used as a very thin layer. The research is the first step toward a larger goal of understanding unconventional superconducting states in materials, which could possibly be used in quantum computing in the future.

The collaboration includes four faculty members in the University of Minnesota's School of Physics and Astronomy--Associate Professor Vlad Pribiag, Professor Rafael Fernandes, and Assistant Professors Fiona Burnell and Ke Wang--along with physicists at Cornell University and several other institutions.

Niobium diselenide (NbSe2) is a superconducting metal, meaning that it can conduct electricity, or transport electrons from one atom to another, with no resistance. It is not uncommon for materials to behave differently when they are at a very small size, but NbSe2 has potentially beneficial properties. The researchers found that the material in 2D form (a very thin substrate only a few atomic layers thick) is a more resilient superconductor because it has a two-fold symmetry, which is very different from thicker samples of the same material.

Motivated by Fernandes and Burnell's theoretical prediction of exotic superconductivity in this 2D material, Pribiag and Wang started to investigate atomically-thin 2D superconducting devices.

"We expected it to have a six-fold rotational pattern, like a snowflake." Wang said. "Despite the six-fold structure, it only showed two-fold behavior in the experiment."

"This was one of the first times [this phenomenon] was seen in a real material," Pribiag said.

The researchers attributed the newly-discovered two-fold rotational symmetry of the superconducting state in NbSe2 to the mixing between two closely competing types of superconductivity, namely the conventional s-wave type--typical of bulk NbSe2--and an unconventional d- or p-type mechanism that emerges in few-layer NbSe2. The two types of superconductivity have very similar energies in this system. Because of this, they interact and compete with each other.

Pribiag and Wang said they later became aware that physicists at Cornell University were reviewing the same physics using a different experimental technique, namely quantum tunneling measurements. They decided to combine their results with the Cornell research and publish a comprehensive study.

Burnell, Pribiag, and Wang plan to build on these initial results to further investigate the properties of atomically thin NbSe2 in combination with other exotic 2D materials, which could ultimately lead to the use of unconventional superconducting states, such as topological superconductivity, to build quantum computers.

"What we want is a completely flat interface on the atomic scale," Pribiag said. "We believe this system will be able to give us a better platform to study materials to use them for quantum computing applications."

Facts, background information, dossiers
More about University of Minnesota
  • News

    Energy researchers invent chameleon metal that acts like many others

    A team of energy researchers led by the University of Minnesota Twin Cities have invented a groundbreaking device that electronically converts one metal into behaving like another to use as a catalyst for speeding chemical reactions. The fabricated device, called a “catalytic condenser,” is ... more

    First fully 3D-printed, flexible OLED display

    In a groundbreaking new study, researchers at the University of Minnesota Twin Cities used a customized printer to fully 3D print a flexible organic light-emitting diode (OLED) display. The discovery could result in low-cost OLED displays in the future that could be widely produced using 3D ... more

    Exploding and weeping ceramics

    From coffee cups to bathroom tiles, ceramics are brittle.  Subject to the slightest deformation, they shatter. On the other end of the spectrum of materials, some of the most deformable materials known - that also support large stresses while they deform - are shape memory alloys.  The orig ... more

  • Videos

    New method for making zeolite nanosheets for ultra-selective membranes

    A new method to make zeolite nanosheets leads to high performance membranes for separation and purification processes. Credit: Prashant Kumar and Michael Tsapatsis, University of Minnesota more

    Video of heat transfer at the nanoscale

    This video made with the University of Minnesota ultrafast electron microscope (UEM) shows the initial moments of thermal-energy motion in an imperfect semiconducting material. The video shows nanoscale waves of energy, called phonons, moving at about 6 nanometers (0.000000006 meters) per p ... more