22-Aug-2011 - Julius-Maximilians-Universität Würzburg

High-tech microscope measures electron oscillations

Researchers from Bielefeld, Kaiserslautern and Würzburg have developed a novel high-tech microscope: It magnifies objects a million times and shows movements with a retardation of one million billion times.

The new technology allows tracking extremely fast processes in miniature objects – with an unparalleled spatial and temporal resolution. "For the first time we were able to determine the duration of electron oscillations in a single nano structure", says Professor Tobias Brixner of the Institute for Physical and Theoretical Chemistry of the University of Würzburg.

The analyses have shown that the collective electron movement after exciting a silver nano structure with light lasts up to 20 times longer in certain places than was thought. The duration of electron oscillations is of interest not only for basic research. It also has a significant influence on the efficiency of energy transport processes as occur, for instance, in photovoltaic cells or during the photosynthesis of plants.

"Our new method will allow us in the future to track very fast processes in many natural and artificial nano-structured materials", the scientists explain.

The research team and its sponsors

The teams of Professor Martin Aeschlimann (Kaiserslautern), Tobias Brixner (Würzburg) and Walter Pfeiffer (Bielefeld) presented their new analysis method on 11 August 2011 in "Science". The German research association (DFG) has supported the project of the three research teams within the scope of its priority program "Ultrafast Nano-Optics".

Electron microscopy combined with laser flashes

How did the cooperation partners accomplish this success? They combined the advantages of an electron microscope with the excitation of ultra-short laser flashes and the high time resolution that can be achieved by this. This enables them to detect structures ten times smaller than would be possible using optical microscopes. The progress of the object properties can thus be followed with the extremely high time resolution of a few femtoseconds – an inconceivably short period of time during which a jet plane travels a distance smaller than the diameter of an atom", as Professor Brixner compares.

In order to be able to track ultrafast processes in the microcosm, the researchers use a complex sequence of ultra-short laser pulses which experts refer to as "coherent two-dimensional nanoscopy". The physicists and physical chemists finally accomplished their goal by developing a new sequence of laser pulses and the proof of the electrons emitted in this process.

  • Martin Aeschlimann et al.; „Coherent Two-Dimensional Nanoscopy"; Science
Facts, background information, dossiers
More about Uni Würzburg
  • News

    Topological Nanoelectronics

    Physicists at the University of Würzburg have made a ground-breaking discovery: They have realized a fundamental nanoelectronic device based on the topological insulator HgTe previously discovered in Würzburg. Topological insulators are materials with astonishing properties: Electric curre ... more

    Energy Flow in the Nano Range

    It is crucial for photovoltaics and other technical applications, how efficiently energy spreads in a small volume. With new methods, the path of energy in the nanometer range can now be followed precisely. Plants and bacteria lead the way: They can capture the energy of sunlight with ligh ... more

    Making More Plastics Recyclable

    To date, it is nothing but the wishful thinking of many plastics recyclers: that recyclability is taken into account right from the very beginning of a product’s life cycle, at the product design stage. A new project aims at making this dream come true. Whether multi-layered food packaging ... more

More about TU Kaiserslautern
More about Uni Bielefeld
  • News

    Spin current from heat

    Electronic devices such as computers generate heat that mostly goes to waste. Physicists at Bielefeld University have found a way to use this energy: They apply the heat to generate magnetic signals known as 'spin currents'. In future, these signals could replace some of the electrical curr ... more

    Chip-based nanoscopy: Microscopy in HD quality

    This information can be used to produce images with a resolution of about 20 to 30 nanometres, and thereby ten times that of conventional light microscopy. Until now, this method has required the use of expensive special instruments. Bielefeld University and the University of Tromsø have fi ... more

    Hot electrons point the way to perfect light absorption

    Light-absorbing films can be found in many everyday applications such as solar cells or sensors. They are used to convert light into electrical current or heat. The films literally trap the light. Although such absorber films are applied widely, scientists still do not know which mechanism ... more