04-Jun-2015 - Wiley-VCH Verlag GmbH & Co. KGaA

Short, Ultrashort, Sub-Cycle Short

Making light pulses ever-shorter is one of the goals in ultrafast optics.

Ultrashort light pulses are a valuable achievement. They make it possible to observe chemical reactions, opening up the field of femtochemistry. Other current and/or future applications include high capacity telecommunications systems, photonic switching devices, optical coherence tomography, and high precision surgical cutting. The damage to surrounding tissues during surgery is greatly reduced as the pulse duration decreases. Of course, this is by far not the only reason why scientists are keen to reduce the pulse duration further and further. Light pulses with the shortest possible duration offer a wealth of benefits both for fundamental research and for technical applications.

Since the invention of the laser and the discovery of mode locking, there has been a constant effort directed at the generation of ever-shorter light pulses, in a quest to approach (and overcome) the limit set by the period of the optical carrier wave. “The two key ingredients for a short light pulse are broad bandwidth, dictated by the Fourier theorem, and accurate control of the dispersion, i.e. of the relative arrival time of the different frequency components, so as to achieve transform-limited pulse widths”, explains Cristian Manzoni. The transform limit is the lower limit for the pulse duration possible for a given optical spectrum of a pulse. The generation of sub-optical-cycle, carrier-envelope phase-stable light pulses is one of the frontiers of ultrafast optics.

Sub-cycle pulse generation needs bandwidths substantially exceeding one octave and accurate control of the spectral phase. These requirements are very challenging to satisfy with a single laser beam. One promising strategy for shortening the duration of light pulses is coherent combination, or synthesis, of longer pulses from separate sources. Says Manzoni: “Intense research activity is currently devoted to the coherent synthesis of pulses generated by separate sources.”

In their review article, Manzoni and his co-authors from Politecnico di Milano, Elektronen-Synchrotron DESY and Hamburg Center for Ultrafast Imaging, Cornell University, Columbia University, and MIT discuss the conceptual schemes and experimental tools that can be employed for the generation, amplification, control, and combination of separate light pulses. They give an overview on main conceptual approaches to waveform synthesis and discuss the experimental tools required for coherent synthesis, giving details of various techniques for the control of pulse relative delay and carrier-envelope phase, and the tailoring of their spectral phase.

The main techniques for the spectrotemporal characterization of the synthesized fields are also described. In addition, recent implementations of coherent waveform synthesis are presented: from the first demonstration of a single-cycle optical pulse by the addition of two pulse trains derived from a fiber laser, to the coherent combination of the outputs from optical parametric chirped-pulse amplifiers (OPCPAs).

The authors are convinced that sub-cycle waveform synthesizers working at optical frequencies will be able to overcome the traditional bandwidth limitations of ultrafast amplifiers. In addition, optical parametric amplifier (OPA)- and OPCPA-based synthesizers will in the future overcome energy and average power bottlenecks.

Facts, background information, dossiers
  • femtochemistry
  • photonics
  • optical coherence tomograph
  • Politecnico di Milano
More about Wiley-VCH
  • News

    Chemical hydrogen storage system

    Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems. Scientists at the Weizmann Institute of Science, Israel, have now developed a chemical storage system based on simple and abundant ... more

    For a Better Contrast

    Magnetic resonance imaging (MRI) has emerged as one of the most powerful clinical imaging tools because of its superb spatial resolution and soft tissue contrast, especially when using contrast agents. In the European Journal of Inorganic Chemistry, scientists have presented a new kind of n ... more

    A Successful Coupling

    Coupled oxygen transfer and electron transfer reactions that use cofactors are enzymatic reactions of crucial significance to all lifeforms from bacteria to vertebrates. In the European Journal of Inorganic Chemistry, scientists have introduced a model for the enzyme sulfite oxidase. It is ... more

  • Companies

    Wiley-VCH Verlag GmbH & Co. KGaA

    Wiley-VCH publishes monographs, textbooks, major references works and journals in print or online. Wiley-VCH can look back on over 80 years of publishing in chemistry, materials sciences, physics and the life sciences. more

More about Politecnico di Milano
  • News

    Predicting unpredictable reactions

    Computational catalysis, a field that simulates and accelerates the discovery of catalysts for chemicals production, has largely been limited to simulations of idealized catalyst structures that do not necessarily represent structures under realistic reaction conditions. New research from t ... more

    Smog-eating graphene composite reduces atmospheric pollution

    Graphene Flagship partners the University of Bologna, Politecnico di Milano, CNR, NEST, Italcementi HeidelbergCement Group, the Israel Institute of Technology, Eindhoven University of Technology, and the University of Cambridge have developed a graphene-titania photocatalyst that degrades u ... more

    Germanium made laser compatible

    Researchers from ETH Zurich, the Paul Scherrer Institute (PSI) and the Politec-nico di Milano have jointly developed a manufacturing technique to render the semiconductor germanium laser-compatible through high tensile strain. In their article they reveal how they can gen-erate the necessar ... more