14-Jul-2015 - Tohoku University

Tunneling out of the surface

A research team comprising scientists from Tohoku University, RIKEN, the University of Tokyo, Chiba University and University College London have discovered a new chemical reaction pathway on titanium dioxide (TiO2), an important photocatalytic material.

The reaction mechanism, reported in ACS Nano, involves the application of an electric field that narrows the width of the reaction barrier, thereby allowing hydrogen atoms to tunnel away from the surface. This opens the way for the manipulation of the atomic-scale transport channels of hydrogen, which could be important in hydrogen storage. Hydrogen has been put forward as a clean and renewable alternative to the burning of hydrocarbons and one of the great challenges of our day is to find an efficient way to store and transport it.

The team used scanning tunneling microscopy (STM) to directly visualize single hydrogen ions, a common atomic defect on TiO2. In STM, the surface structure of a solid surface is observed on the atomic scale by scanning a sharp probe across the surface and monitoring the tunneling current. Minato et al. were able to desorb individual hydrogen ions from the surface by using the STM probe to apply electrical pulses to the hydrogen. The pulse generates an electric field as well as injecting electrons into the sample. By using a new theoretical approach developed by Dr. Kajita, the team confirmed that rather than reducing the reaction barrier height, the electric field reduces the width of the barrier, thereby allowing the hydrogen to desorb by quantum tunneling.

Lead author Prof. Taketoshi Minato (Tohoku Univ. and RIKEN, currently Kyoto University) commented that "The new reaction pathway could be exploited in nanoscale switching devices and hydrogen storage technology. For instance, electric fields could be used to extract hydrogen from a TiO2-based storage device"

Facts, background information, dossiers
  • Tohoku University
  • Riken
  • University College London
More about Tohoku University
More about RIKEN
More about University of Tokyo
  • News

    Sustainable chemical synthesis with platinum

    Researchers used platinum and aluminum compounds to create a catalyst which enables certain chemical reactions to occur more efficiently than ever before. The catalyst could significantly reduce energy usage in various industrial and pharmaceutical processes. It also allows for a wider rang ... more

    Concrete without cement?

    Researchers at the Institute of Industrial Science, a part of The University of Tokyo, have developed a new method of producing concrete without cement. They have directly bonded sand particles via a simple reaction in alcohol with a catalyst. This may help both to slash carbon emissions an ... more

    How does your computer smell?

    A keen sense of smell is a powerful ability shared by many organisms. However, it has proven difficult to replicate by artificial means. Researchers combined biological and engineered elements to create what is known as a biohybrid component. Their volatile organic compound sensor can effec ... more

More about Chiba University
  • News

    Gold- and bronze-like paints that don't contain metal

    Lustrous metallic paints are used to enhance the beauty of many products, such as home decorations, cars and artwork. But most of these pigments owe their sheen to flakes of aluminum, copper, zinc or other metals, which have drawbacks. Now, researchers reporting in ACS Omega have developed ... more

    Transition to sustainable catalysis

    Yasumasa Hamada and colleagues at Chiba University used a combination of nickel acetate and a commercially available phosphine ligand to catalyse the asymmetric hydrogenation of an alpha-amino-beta-keto ester hydrochloride. Although others have reported similar reactions, Hamada says this i ... more

More about University College London
  • News

    New material for longer-lasting fuel cells developed

    In the study, published in the journal Nanoscale, scientists produced graphene via a special, scalable technique and used it to develop hydrogen fuel cell catalysts. The research team, involving scientists from Queen Mary University of London and University College London (UCL), showed that ... more

    Fast-charging, long-running, bendy energy storage breakthrough

    A new bendable supercapacitor made from graphene, which charges quickly and safely stores a record-high level of energy for use over a long period, has been developed and demonstrated by UCL and Chinese Academy of Sciences researchers. While at the proof-of-concept stage, it shows enormous ... more

    Using neutrons and X-rays to analyse the ageing of lithium batteries

    An international team has used neutron and X-ray tomography to investigate the dynamic processes that lead to capacity degradation at the electrodes in lithium batteries. Using a new mathematical method, it was possible to virtually unwind electrodes that had been wound into the form of a c ... more

  • Videos

    Understanding how Lithium-ion batteries fail

    What happens when lithium-ion batteries overheat and explode has been imaged inside and out for the first time by a team led by UCL PhD student Donal Finegan (UCL Chemical Engineering) and Dr Paul Shearing (UCL Chemical Engineering).Understanding how Li-ion batteries fail and potentially ca ... more