12-Nov-2015 - University of Copenhagen

Sea urchin spurs new ideas for lightweight materials

Materials researchers love sea creatures. Mother-of-pearl provokes ideas for smooth surfaces, clams inspire gluey substances, shark's skin is used to develop materials that reduce drag in water, and so on. Researchers at the University of Copenhagen's Department of Chemistry have now found a model for strong, lightweight materials by diving below the sea surface to investigate a sea urchin cousin known as the heart urchin.

Dirk Müter is an assistant professor in the Department of Chemistry's NanoGeoScience research group, who headed the project.

Heart urchins (Echinocardium cordatum), also known as sea potatoes, measure up to 5 cm in diameter, are heart shaped and burrow in sand. They extend a channel to feed upon organic particles from the waters above their burrow. Like "regular" sea urchins, these "irregular" heart urchins are soft creatures that use their calcium carbonate exoskeletons to protect their otherwise edible bodies from predation. And as it turns out, their shells are unexpectedly robust.

The idea to study heart urchin shells dawned upon a vacationing Müter while he was walking down a Croatian beach. The paper-thin urchin shells were washed up onto the beach, and Müter observed that they had astonishingly few blemishes despite being so thin.

To understand the sturdy calcium carbonate shells, Müter and his colleagues used a relatively new technology called x-ray microtomography. The technique was used to create three-dimensional images of the material contents, without having to break the shells up into pieces. The x-ray images are so fine that it is possible to distinguish structures of less than one-thousandth of a millimetre. This ultra fine resolution proved decisive in coming to understand the shell's strength.

Anyone who has ever broken a piece of chalk knows that calcium carbonate is fragile. And, heart urchin shells consist of more air than chalk. In fact, as one gets up close to the shell material, it begins to resemble soapsuds. The material consists of an incredible number of microscopic cavities held together by slender calcium carbonate (chalk) struts. There are between 50,000 and 150,000 struts per cubic millimetre, and in some areas, the material is composed of up to 70% air.

Calcium carbonate can be many things, from unyielding marble to the soft and somewhat brittle chalk that we use to write with. While heart urchin shells and writing chalk share a similar porosity, the urchin shells are up to six times stronger than chalk. Müter's studies demonstrate that heart urchin shells have a structure that nears a theoretical ideal for foam structure strength - a must for a creature that has evolved to withstand life under 10 metres of water and an additional 30 centimetres of sand.

Müter explains that to their great surprise, heart urchin shell strength varied between shell regions due to greater or lesser concentrations of struts within specific regions, not because of thinner or thicker struts.

"We found an example of a surprisingly simple construction principle. This is an easy way to build materials. It allows for great variation in structure and strength. And, it is very near optimal from a mechanical perspective," states Assistant Professor Dirk Müter.

Müter and his NanoGeoScience colleagues expect that their new insights will serve to improve shock- absorbent materials among other outcomes.

Facts, background information, dossiers
  • Echinocardium cordatum
  • University of Copenhagen
  • material science
More about University of Copenhagen
  • News

    New class of substances detected in atmospheric chemistry

    An international research team has now succeeded in detecting hydrotrioxides (ROOOH) for the first time under atmospheric conditions. Until now, there was only speculation that these organic compounds with the unusual OOOH group exist. In laboratory experiments, their formation during the o ... more

    Reusable plastic bottles release hundreds of chemicals

    Researchers at the University of Copenhagen have found several hundred different chemical substances in tap water stored in reusable plastic bottles. Several of these substances are potentially harmful to human health. There is a need for better regulation and manufacturing standards for ma ... more

    A treasure map for the realm of electrocatalysts

    Efficient electrocatalysts, which are needed for the production of green hydrogen, for example, are hidden in materials composed of five or more elements. A team from Ruhr-Universität Bochum (RUB) and the University of Copenhagen has developed an efficient method for identifying promising c ... more