06-Apr-2016 - University of Helsinki

Nanoparticles can grow in cubic shape

The efficiency of many applications deriving from natural sciences depends dramatically on a finite-size property of nanoparticles, so-called surface-to-volume ratio. The larger the surface of nanoparticles for the same volume is achieved, the more efficiently nanoparticles can interact with the surrounding substance. However, thermodynamic equilibrium forces nanostructures to minimize open surface driven by energy minimization principle. This basic principle predicts that the only shape of nanoparticles can be spherical or close-to-spherical ones.

Nature, however, does not always follow the simple principles. An intensive collaboration between University of Helsinki, Finland, and Okinawa Institute of Science and Technology, Japan, showed that in some condition iron nanoparticles can grow in cubic shape. The scientists also succeeded in disclosing the mechanisms behind this.

"Now we have a recipe how to synthesize cubic shapes with high surface-to-volume ratio which opens the door for practical applications", says Dr. Flyura Djurabekova from the University of Helsinki.

In the researcher's work, experiment and theory were brought together via a new mathematical model, which gives a recipe on how to select macroscopic experimental conditions to achieve the formation of nanoparticles of desired shape.

The computational work carried out in the group of Djurabekova showed the importance of kinetical processes in this surprising phenomenon, namely the competition between surface diffusion and deposition rate of atoms. The simulations showed how an originally spherical nucleus transforms into a perfect cube.

Facts, background information, dossiers
More about University of Helsinki
  • News

    Gold Recycling

    “Urban mining”, the recycling of precious metals from electronic gadgets, becomes ever more important, although processes that are both efficient and environmentally benign are still scarce. An international team of scientists has now looked deeper into gold dissolution, in particular, how ... more

    Rapid pair production: Detection of a new reaction path in the atmosphere

    Scientists have now observed a particularly rapid type of pair production in the laboratory: Hydrocarbons double when two peroxyl radicals react with each other. This means that stable products with the carbon skeleton of both peroxyl radicals are formed, which very likely will have a perox ... more

    Novel testing device for detecting toxic blue-green algae

    VTT Technical Research Centre of Finland has developed a fast and affordable testing device for detecting the presence of toxic blue-green algae in water. There is currently no fast, affordable and user-friendly way for consumers to check water quality themselves. The blue-green algae testi ... more