21-Jan-2019 - Polish Academy of Sciences

This computer program makes pharma patents airtight

Routes to making life-saving medications and other pharmaceutical compounds are among the most carefully protected trade secrets in global industry. Building on recent work programming computers to identify synthetic pathways leading to pharmaceutically complex molecules, researchers in Poland and South Korea have unveiled computerized methods to suggest only synthetic strategies that bypass patent-protected aspects of essential drugs.

"When we started this project, I was somewhat skeptical that the machine would find any viable synthetic alternatives--after all, these are blockbuster drugs worth gazillions of dollars, and I was sure that the respective companies had covered the patent space so densely that no loopholes remained," says senior author Bartosz Grzybowski, a professor of chemistry at the Ulsan National Institute of Science and Technology (South Korea) and the Polish Academy of Sciences and the lead developer of the organic synthesis software Chematica. "It turns out that the loopholes are there, and we can find new retrosynthetic pathways that circumvent the patents entirely."

Those pharmaceutical patents protect the company's intellectual property while also preventing competitor companies from using certain key synthetic solutions--developed painstakingly by experiment to maximize yield, increase purity, and reduce costs--when attempting to produce desired compounds. To get to viable unpatented options, the researchers "froze" challenging portions of each target molecule, forcing the computer to substitute unconventional yet chemically plausible approaches on the basis of mechanistic rules. They tested their system out on three notable commercial medicines with different chemical hurdles: linezolid, a last-resort antibiotic; sitagliptin, an antidiabetic drug; and panobinostat, a multiple myeloma treatment.

In each case, when allowed to run without constraints, the program recommended the commercial syntheses. But when even a few atoms and bonds were designated as untouchable, it innovated by applying Chematica's existing functions to propose new plans that neatly avoided those already patented. "By algorithmically locating the key bonds on which patents hinge and propagating them down Chematica's retrosynthetic trees, we can generate synthetic solutions from alternative yet economical starting materials, achieving a real practical impact," Grzybowski says.

Chematica's patent-dodging abilities could also alter how chemists approach intellectual property and patent law. For example, machine-aided searches could be used to restrict many different parts of a target molecule, lumping radically different syntheses into a single airtight patent. According to Grzybowski, however, such a patent would not necessarily stay loophole-free forever, thanks to the likely future experimental discovery of novel reactions driving chemical knowledge forward through healthy competition.

Overall, the researchers hope that their software will aid pharmaceutical companies in better protecting their intellectual property and, simultaneously, will help accelerate research and development in organic chemistry by supplying synthetic routes that differ from standard approaches. "This work illustrates the benefits of pushing chemists to think algorithmically and asking computer scientists to grasp key chemical concepts, delivering chemical artificial intelligence results that matter beyond the confines of academia," adds co-author Piotr Dittwald, a research fellow with training in mathematics and computer science.

Facts, background information, dossiers
  • retrosynthesis
More about Polish Academy of Sciences
  • News

    World's first video recording of a space-time crystal

    A German-Polish research team has succeeded in creating a micrometer-sized space-time crystal consisting of magnons at room temperature. With the help of the scanning transmission X-ray microscope MAXYMUS at Bessy II at Helmholtz Zentrum Berlin, they were able to film the recurring periodic ... more

    The most exotic fluid has an unexpectedly low viscosity

    Collisions of lead nuclei in the Large Hadron Collider (LHC) particle accelerator take place at such great energies that quarks that are normally confined inside nucleons are released and, together with the gluons that hold them together, form a stream of particularly exotic fluid: quark-gl ... more

    The first light atomic nucleus with a second face

    To some degree of approximation, atomic nuclei look like spheres which in most cases are distorted to a greater or lesser extent. When the nucleus is excited, its shape may change, but only for an extremely brief moment, after which it returns to its original state. A relatively permanent ' ... more

More about Institute for Basic Science
  • News

    Hollow porphyrinic nanospheres

    Famous Catalan architect Antoni Gaudí once said, "Anything created by human beings is already in the great book of nature." Among different man-made architectures and art, spherical structures and shapes have been the most fantastical geometrical form that fascinated the figments of the hum ... more

    Seeing chemical reactions with music

    Albert Einstein once said, "I see my life in terms of music." Perhaps inspired by his words, scientists at the Center for Self-assembly and Complexity (CSC), within the Institute for Basic Science (IBS, South Korea) now see chemical reactions in the presence of music. The IBS research team ... more

    Growing carbon nanotubes with the right twist

    In a recently published paper in Science Advances, Feng Ding of the Center for Multidimensional Carbon Materials, within the Institute of Basic Science (IBS, South Korea) and colleagues, have achieved the creation of a specific type of carbon nanotubes (CNTs) with a selectivity of 90%, and ... more

  • Videos

    Multiresponsive nanosurfactant integrates functions of molecular surfactants

    (0:00) Droplets coated with nanosurfactants are hit with a laser which clumps the droplets into a two-dimensional hexagonal structure and rotates them much like gears. (0:17) Droplets are randomly distributed and then a laser is turned on which attracts them together into a bilayer aggregat ... more

More about Cell Press
  • News

    Thermal vision of snakes inspires soft pyroelectric materials

    Converting heat into electricity is a property thought to be reserved only for stiff materials like crystals. However, researchers--inspired by the infrared (IR) vision of snakes--developed a mathematical model for converting soft, organic structures into so-called "pyroelectric" materials. ... more

    Chemists create the brightest-ever fluorescent materials

    By formulating positively charged fluorescent dyes into a new class of materials called small-molecule ionic isolation lattices (SMILES), a compound's brilliant glow can be seamlessly transferred to a solid, crystalline state, researchers report August 6 in the journal Chem. The advance ove ... more

    Bacteria and sand engineered into living concrete

    Cement and concrete haven't changed much as technology in over a hundred years, but researchers in Colorado are revolutionizing building materials by literally bringing them to life. The method developed, presented January 15 in the journal Matter, combines sand and bacteria to build a livi ... more