02-Mar-2017 - Springer-Verlag GmbH

Smart multi-layered magnetic material acts as an electric switch

The nanometric-size islands of magnetic metal sporadically spread between vacuum gaps display unique conductive properties under a magnetic field. In a recent study published in EPJ Plus, Anatoliy Chornous from Sumy State University in Ukraine and colleagues found that the vacuum gaps impede the direct magnetic alignment between the adjacent islands -- which depends on the external magnetic field -- while allowing electron tunneling between them. Such externally controlled conducting behaviour opens the door for applications in electronics with magnetic field sensors -- which are used to read data on hard disk drives -- biosensors and microelectromechanical systems (MEMS), as well as in spintronics with magnetic devices used to increase memory density.

At the quantum scale, materials characterised by thin-film structures composed of alternating magnetic and non-magnetic layers behave in a way that produces what is referred to as the Giant Magnetoresistance (GMR) effect. This discovery garnered Albert Fert and Peter Grünberg the 2007 Nobel Prize in Physics. In this study, the authors studied cobalt islands of between 5 nanometers (nm) and 25 nm, as well as iron islands of between 10 nm and 30 nm.

They found that the maximum values of the electric conductivity under an external magnetic field are obtained when the islands have a width of between 3 nm and 5 nm, with vacuum barriers of between 1 nm and 3 nm between them. However, they also observed that the tunnelling of electrons between the islands depends on the relative orientation of the direction of magnetisation in the adjacent islands and on the external magnetic field.

In addition, they determined that the electric conductivity is at a maximum when the magnetic moments in the adjacent granules are oriented in parallel, which leads to the tunnel magnetoresistance effect (TMR). The value of the tunneling magnetoresistance essentially depends on the interface properties of the insulator material between those islands.

Facts, background information, dossiers
  • microelectromechani…
  • magnetization
  • cobalt
  • biosensors
More about Springer-Verlag
  • News

    First machine-generated chemistry book published

    Springer Nature published its first machine-generated book, compiled using an algorithm developed by researchers from Goethe University. This collaboration broke new ground with the first machine-generated book to be published by a scholarly publisher.  The book is available as a free downl ... more

    Is there something up with stinky inflatable pool toys?

    Inflatable toys and swimming aids, like bathing rings and arm bands, often have a distinctive smell which could indicate that they contain a range of potentially hazardous substances. Some of these compounds, which include carbonyl compounds, cyclohexanone, phenol and isophorone, might be c ... more

    The secrets of vibration-enhanced conductivity in graphene

    Graphene, the one-atom-thick material made of carbon atoms, still holds some unexplained qualities, which are important in connection with electronic applications where high-conductivity matters, ranging from smart materials that collectively respond to external stimuli in a coherent, tunab ... more

  • Companies

    Springer-Verlag GmbH

    Springer is a leading global scientific, technical and medical portfolio, providing researchers in academia, scientific institutions and corporate R&D departments with quality content through innovative information, products and services. more