13-Apr-2017 - National Institute for Materials Science (NIMS)

All in one against CO2

Elemental Boron is an effective photothermocatalyst for the conversion of carbon dioxide

A "self-heating" boron catalyst that makes particularly efficient use of sunlight to reduce carbon dioxide (CO2) serves as a light harvester, photothermal converter, hydrogen generator, and catalyst in one. Researchers introduce a photothermocatalytic reaction that requires no additives beyond water. This could form the basis of a new, more efficient process for converting the greenhouse gas CO2 into a useful carbon source for the production of fuels and chemical products.

The ideal route for making CO2 useful is considered to be reduction aided by a photocatalyst to use sunlight as the only source of energy--a process that corresponds to the first step of photosynthesis. Despite decades of research, processes for converting CO2 are still too inefficient. "This is largely due to the insufficient utilization of solar light, the high energy barrier for CO2 activation, and the sluggish kinetics of the multiple electron and proton transfer processes," explains Jinhua Ye.

Working with a team for the National Institute for Materials Science (NIMS) in Tsukuba, Ibaraki, and Hokkaido University in Sapporo (Japan), as well as Tianjin University and Nanjing University of Aeronautics and Astronautics (China), Ye is now pursuing a strategy that uses both the light and thermal energy provided by sunlight. When the sun shines on a surface, it is heated. The researchers want to use this ordinary photothermic effect to increase the efficiency of catalytic systems. Their material of choice is powdered elemental boron, which very strongly absorbs sunlight and efficiently converts it photothermically, heating itself up remarkably. This allowed the team to carry out the efficient reduction of CO2 to form carbon monoxide (CO) and methane (CH4) under irradiation in the presence of water, with no additional reagents or co-catalysts.

Irradiation causes the boron particles to heat up to about 378 °C. At this temperature it reacts with water, forming hydrogen and boron oxides in situ. The boron oxides act as "traps" for CO2 molecules. The hydrogen is highly reactive and, in the presence of the light-activated boron catalyst, efficiently reduces the CO2 by providing the necessary protons (H+) and electrons.

"The key to our success lies in the favorable properties of the boron powder, which make it an all-in-one catalyst: light harvester, photothermic converter, hydrogen source, and catalyst," says Ye. "Our study confirms the highly promising potential of a photothermocatalytic strategy for the conversion of CO2 and potentially opens new vistas for the development of other solar-energy-driven reaction systems."

Facts, background information, dossiers
  • photothermocatalysis
  • photocatalysts
  • CO2 activation
More about National Institute for Materials Science
More about Hokkaido University
More about Tianjin University
More about Nanjing University
  • News

    New 3D chirality discovered and synthetically assembled

    The origin of lives of human beings, animals and plants on earth is attributed to chirality because it is necessitated for the formation of biomolecules, such as nucleic acids, proteins, carbohydrates, etc. The studies on chirality have been becoming increasingly active and extensive due to ... more

    4D imaging with liquid crystal microlenses

    Most images captured by a camera lens are flat and two dimensional. Increasingly, 3D imaging technologies are providing the crucial context of depth for scientific and medical applications. 4D imaging, which adds information on light polarization, could open up even more possibilities, but ... more

    The "great smoky dragon" of Quantum Physics

    Physicists around Anton Zeilinger have, for the first time, evaluated the almost 100-year long history of quantum delayed-choice experiments – from the theoretical beginnings with Albert Einstein to the latest research works in the present. Since the 17th century, science was intrigued by t ... more

More about Angewandte Chemie
  • News

    Active Platinum Species

    Highly dispersed platinum catalysts provide new possibilities for industrial processes, such as the flameless combustion of methane, propane, or carbon monoxide, which has fewer emissions and is more resource efficient and consistent than conventional combustion. In the journal Angewandte C ... more

    Now Available with a Negative Charge too

    The incorporation of boron into polycyclic aromatic hydrocarbon systems leads to interesting chromophoric and fluorescing materials for optoelectronics, including organic light-emitting diodes (OLEDS) and field-effect transistors, as well as polymer-based sensors. In the journal Angewandte ... more

    CO2 Catalysis Made More Accessible

    Many industrial processes emit carbon dioxide into the atmosphere. Unfortunately, however, current electrochemical separation methods are expensive and consume large amounts of power. They also require expensive and rare metals as catalysts. A study in the journal Angewandte Chemie describe ... more