New fabric coating protects your clothes, and the environment
When you spill pasta sauce on your favorite shirt but there is no trace of it after being washed, you can thank oleophobicity, a resistance to oil commonly applied to textiles.

Samples of cloth both untreated, left, and treated with a fluorine-free oleophobic coating.
Genggeng Qi, Cornell University
That resistance, however, comes at a price. The coating that makes textiles oil resistant is fluorine-based and breaks down into chlorofluorocarbon gas, a greenhouse gas harmful to the environment.
But that may change, as a result of a Cornell University cross-campus collaboration involving Emmanuel Giannelis, professor of materials science and engineering in the College of Engineering, and Jintu Fan, professor and chair of the Department of Fiber Science and Apparel Design in the College of Human Ecology. Work from their labs has yielded a promising new material - for which the pair submitted a patent disclosure to the Center for Technology Licensing (CTL) - that could help change the way oleophobicity is developed. A provisional patent for the material has been filed by CTL, according to Giannelis.
Fan was excited about the partnership, noting that engineers don't always lend their expertise to the fashion industry.
"In general, collaboration with the engineering department is very interesting and fruitful," he said. "They are very good and bring a lot of wonderful ideas. But maybe in the past they were not targeting the textile and fashion industry, which is a $3 trillion a year industry."
At the time of his seminar, Giannelis and his group were working on super-hydrophilic polymeric membranes that are used in water purification, and Fan asked if they could team up and "basically apply some of the work that we were doing in polymeric membranes to textiles," Giannelis said.
They worked with an apparel maker on creating a polymer that could make fabric more breathable while retaining wrinkle resistance - always a challenge - and Giannelis said they made good progress along that line.
"The company came back and said, 'That is good and great - but can you do something similar with oleophobic coatings?'" he said. "It's a very different kind of chemistry, and something we had not worked on previously, but one of the great things about being at Cornell is that we have great students and postdocs who can take this kind of challenge and do great things."
Postdoctoral researcher Genggeng Qi developed a polymer that combines well-known chemistry with a rough surface texture that creates little air pockets. Fluids with a high enough surface tension will ball up on this fiber and not stick, making for easy cleaning.
This roughness uses the same principle as the water-resistant quality of the lotus leaf, which has a rough nanostructure and naturally repels water.
Fan is excited by early results of this material, noting that they've just done testing using mineral oil, which has a low surface tension.
"We've found that even after 30 washings, it's still durable, which is great," he said. "Even if we can achieve [oleophobicity] even close to fluorine-based [polymers], that would be a huge breakthrough."
Giannelis is cautiously optimistic about the work.
"I don't want to declare complete victory," he said with a smile, "but we believe we are the first group to show that non-fluorine-based chemistry opens up the possibility to create oleophobic coatings that are probably good enough to resist stains from vegetable oils, olive oil, and other oils.
"For industrial applications ... we're not quite there yet,' he added.
"But we believe that we've opened up an opportunity, and more work will get us there."
Topics
Organizations
Other news from the department science
These products might interest you

OCA 200 by DataPhysics
Using contact angle meter to comprehensively characterise wetting behaviour, solids, and liquids
With its intuitive software and as a modular system, the OCA 200 answers to all customers’ needs

Tailor-made products for specific applications by IPC Process Center
Granulates and pellets - we develop and manufacture the perfect solution for you
Agglomeration of powders, pelletising of powders and fluids, coating with melts and polymers

Dursan by SilcoTek
Innovative coating revolutionizes LC analysis
Stainless steel components with the performance of PEEK - inert, robust and cost-effective

Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents
Biesterfeld Plastic and INEOS NOVA extend their partnership for Empera Polystyrene to The United Kingdom and Ireland
Stokes'_law_(sound_attenuation)

The power of going small: Copper oxide subnanoparticle catalysts prove most superior
Dichloroisocyanuric_acid
Ionic liquids could aid in the delivery of active pharmaceutical compounds in the body

BASF concentrates European production of paper coating dispersions in Ludwigshafen and Hamina - Divestiture of BASF production site for paper coating dispersions in Pischelsdorf, Austria

Hy2gen and Amogy Forge Strategic Partnership to Propel Ammonia-Powered Energy Solutions - Accelerate decarbonisation in the maritime sector

Fighting Chemical Pollution Water: Purification using Algae - Fossil remains of diatoms can efficiently remove contaminants from water after being chemically modified
Category:Aviation_fuels

MS-TS Analytical Balance | Analytical balances | Mettler-Toledo
