My watch list
my.chemeurope.com  
Login  

A better way to create organic bioelectronics

29-Aug-2017

Milad Khorrami & Mohammad Reza Abidian, University of Houston

This image demonstrates conducting polymer microcups used for organic bioelectronics and drug delivery applications.

With increasing scientific and medical interest in communication with the nervous system, demand is growing for biomedical devices that can better record and stimulate the nervous system, as well as deliver drugs and biomolecules in precise dosages.

Researchers with the University of Houston and Pennsylvania State University have reported a new fabrication technique for biocompatible neural devices that allow more precise tuning of the electrical performance of neural probes, along with improved properties for drug delivery.

"For years, scientists have been trying to interact with the nervous system, to diagnose Parkinson's disease, epilepsy, multiple sclerosis, brain tumors and other neural disorders and diseases earlier," said Mohammad Reza Abidian, associate professor of biomedical engineering at UH. "In our laboratory we create micro- and nano-devices to communicate with neurons."

Abidian said the new fabrication method allows researchers to precisely control the surface morphology of conducting polymer microcups, improving performance. They used electrojetting and electrodeposition methods for fabricating conducting polymer microcups on the surface of bioelectronics.

"We found that by varying the amount of electrical current and the length of deposition time of these conducting polymers, we can change the size, thickness and roughness, which is related to the electrical properties of the polymer," he said. "We show that conducting polymer microcups can significantly improve the electrical performance of the bioelectrodes."

Typical polymers are often used as an insulating material because they don't generally conduct electricity. The discovery of electronically conducting polymers in the 1970s was recognized with the Nobel Prize in chemistry in 2000.

"The primary requirement of neural devices is to provide high density electrodes that are biologically compatible with neural tissue, efficiently transduce biological signals to electronic signals, and remain functional for long periods of time," the researchers wrote.

But current technology still relies upon metallic materials, which are highly conductive but incompatible with neural tissue. The miniaturization required for the devices also limits the electrical performance, Abidian said.

Conducting polymers, in contrast, better mimic biological tissue in four ways: their soft mechanical properties simulate those of biological structures; their mixed electronic/ionic conductivity promotes efficient signal transduction; their transparency allows the simultaneous use of optical analysis techniques; and their facile functionalization with biomolecules helps tune biological responses.

The new fabrication method involves the electrospraying of monodisperse poly microspheres on gold substrates, followed by an electrochemical polymerization process. Then the researchers control the applied electrical field for the fabrication of conducting polymer microcups, Abidian said, which in turn allowed them to control the surface morphology.

Facts, background information, dossiers
  • gold
  • advanced materials
  • biomedical engineering
  • surface morphology
  • conducting polymers
  • microcups
More about University of Houston
  • News

    Researchers report high performance solid-state sodium-ion battery

    Solid-state sodium-ion batteries are far safer than conventional lithium-ion batteries, which pose a risk of fire and explosions, but their performance has been too weak to offset the safety advantages. Researchers reported developing an organic cathode that dramatically improves both stabi ... more

    A smartphone system to test for lead in water

    The discovery of lead in Flint, Michigan's drinking water drew renewed attention to the health risks posed by the metal. Now researchers at the University of Houston have created an inexpensive system using a smartphone and a lens made with an inkjet printer that can detect lead in tap wate ... more

    'Soft' robots that can move on their own

    If Star Wars' R2-D2 is your idea of a robot, think again. Researchers led by a University of Houston engineer have reported a new class of soft robot, composed of ultrathin sensing, actuating electronics and temperature-sensitive artificial muscle that can adapt to the environment and crawl ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE