12-Oct-2017 - University College London (UCL)

Probing exotic ices

Water is everywhere. But it's not the same everywhere. When frozen under extreme pressures and temperatures, ice takes on a range of complex crystalline structures.

Many of the properties and behaviors of these exotic ices remain mysterious, but a team of researchers recently provided new understanding. They analyzed how water molecules interact with one another in three types of ice and found the interactions depended strongly on the orientation of the molecules and the overall structure of the ice.

"The new work has given us spectacular new insights on how water molecules behave when packed in dense and structurally complex environments," said Christoph Salzmann of the University College London. "Ultimately, this knowledge will enable us to understand liquid water as well as water surrounding biomolecules in a much better fashion."

Water is, of course, essential for life as we know it. But it's also unique due to its bent molecular shape, with two hydrogen atoms hanging off an oxygen atom at an angle. The overall molecule has an electrical polarity, with positively and negatively charged sides. Because of these properties, water molecules can fit together in a variety of ways when solidifying into ice.

As water typically freezes on Earth, the molecules assemble into a lattice with structural units shaped like hexagons. But at extremely high pressures and low temperatures, the molecules can arrange themselves in more complex ways, forming 17 different phases -- some of which may exist on the icy moons of the outer planets.

While the structures themselves are known, scientists don't yet fully understand how the molecules interact and affect one another, said Peter Hamm of the University of Zurich. In these ice phases, the molecules are bonded together, influencing one another as if they were all connected with springs.

To understand these interactions, Salzmann, Hamm and their team used 2-D infrared spectroscopy on three ice phases with diverse structures: ice II, ice V and ice XIII. In this method, they fired a sequence of ultrashort infrared laser pulses to excite the molecular bonds in the ice, causing them to vibrate.

As the molecular vibrations settle back down to a lower energy state, the molecule emits light at infrared frequencies. By measuring how the intensity of the infrared emission depends on the frequencies of both the pulse and the emitted radiation -- producing 2-D spectra -- the researchers can determine how the molecules interact with one another.

After collecting data on the ice, some of which had to be frozen at below -200 degrees Celsius and at pressures several thousand times that of the atmosphere at sea level, the researchers used computer simulations of molecular interactions to help interpret their results. While the simulations matched the data for ice II, they did not for ice V and XIII, which speaks to the complexity of the system.

Still, insights from this kind of analysis can help inform computer simulations used to model the behavior of biological molecules like proteins, which are usually surrounded by water.

"Water ice is important, and we need to be able to understand it on a very microscopic level," Hamm said. "Then we can better understand how water interacts with other molecules, and particularly biomolecules."

Facts, background information, dossiers
  • water
  • molecules
  • interactions
  • solid state physics
  • solid state systems
  • phase transitions
More about University College London
More about Universität Zürich
More about Uni Groningen
  • News

    Modified enzyme brings value to lignin monomers

    The chemical industry faces the challenge of replacing fossil-based building blocks with green alternatives. Biomass is an interesting source of carbon-based molecules. It is also underused because some 25 percent of all plant biomass is in the form of lignin, a biopolymer that, so far, can ... more

    New flow battery stores power in simple organic compound

    The intermittent supply of green electricity requires large-scale storage to keep our power grids stable. Since normal batteries do not scale very well, the idea of using flow batteries, which store electricity in a fluid is attractive. However, these batteries contain rare metals and are e ... more

    What Do Spiders Have in Common with Batteries?

    Synthetic polymers have changed the world around us, and it would be hard to imagine a world without them. However, they do have their problems. It is for instance hard from a synthetic point of view to precisely control their molecular structure. This makes it harder to finely tune some of ... more

More about American Institute of Physics