24-Apr-2006 - Angewandte Chemie

Chemical Storage Units

Oscillating chemical reactions can retain patterns produced by light

Oscillating chemical reactions occur far beyond thermodynamic equilibrium. The Belousov-Zhabotinsky (BZ) reactions are among the most thoroughly investigated of these. In the BZ reaction a dicarboxylic acid, for example, is oxidized by bromate in acidic solution. A redox-active species, whose oxidized and reduced forms differ in color, acts as the catalyst. Its periodic concentration fluctuations can be followed by the oscillating color change of the reaction mixture.

An unstirred chemical system whose molecules come into contact by diffusion is called a reaction-diffusion system. When an oscillating reaction takes place in a reaction-diffusion system, under appropriate conditions the two different colors of the redox system can distribute themselves in characteristic stationary structures called Turing patterns.

I. R. Epstein and his co-workers have developed a chemical storage unit based on a photosensitive BZ system. They produced a water-in-oil microemulsion of a BZ system in which a ruthenium bipyridyl complex acts as a catalyst. In the dark the system initially formed the usual Turing patterns. Intense irradiation led to the formation of bromide, which inhibited the reaction and caused the patterns to disappear. If the light intensity was gradually increased, the patterns hardly changed until a critical light intensity (Isc) was reached, upon which they suddenly disappeared. Reduction of the light intensity caused the pattern to spontaneously reappear at an intensity (I c) below Isc. In the interval between Ic and Isc , the system was in a steady state, in which no new patterns could form and any patterns already present could not change. If the reaction solution was irradiated through a stencil, an image of the stencil formed on the surface of the microemulsion: Sections not exposed to light had a Turing pattern, irradiated sections did not. This image was retained for over an hour in the steady state.

If the reactants consumed in the BZ reaction could be continuously replenished, the image could be stored indefinitely. Resuming the irradiation would allow the image to be erased and replaced with a new one. In the opinion of the researchers, this fulfils the fundamental requirements for the production of chemical storage modules.

Original publication: Irving R. Epstein et al.; "A Reaction-Diffusion Memory Device"; Angewandte Chemie International Edition 2006, 45, No. 19, 3087-3089.

Facts, background information, dossiers
  • solution
  • water
  • reductions
More about Angewandte Chemie
  • News

    Productive Cascade

    Starting from available chemicals, a German team of researchers successfully completed the total synthesis of agarozizanol B, an interesting natural substance found in agarwood. As described in the journal Angewandte Chemie, the key sequence in the relatively short synthetic pathway is a ph ... more

    Hard Single-Molecule Magnets

    Magnets formed from a single molecule are of particular interest in data storage, since the ability to store a bit on every molecule could vastly increase the storage capacity of computers. Researchers have now developed a new molecular system with a particular magnetic hardness. The ingred ... more

    Cheaper Hydrogen Production

    Electrolytic hydrogen production powered by renewable energy is seen as an environmentally friendly means to ameliorate global climate and energy problems. In the journal Angewandte Chemie, a research team has now introduced a novel and inexpensive material for electrodes that may provide f ... more

More about Brandeis University
  • News

    Turing's theory of chemical morphogenesis validated 60 years after his death

    Alan Turing's accomplishments in computer science are well known, but lesser known is his impact on biology and chemistry. In his only paper on biology, Turing proposed a theory of morphogenesis, or how identical copies of a single cell differentiate, for example, into an organism with arms ... more

    Reacting under intensity – a light-responsive oscillating gel

    An international team of chemists has developed a soft material that shows different behaviour depending on the intensity of the light shining on it. The gel could potentially be applied in robots and other devices to enable them to respond to different illumination patterns. The unusual pr ... more

    Breaking harmful bonds

    Everybody loves the way breakfast eggs conveniently slide off of Teflon without leaving any pesky pieces of egg in the pan. Indeed, the carbon-fluorine bond at the heart of Teflon cookware is so helpful we also use it in clothing, lubricants, refrigerants, anesthetics, semiconductors, and e ... more