My watch list
my.chemeurope.com  
Login  

Berkeley Lab scientists create 'molecular paper'

16-Apr-2010

Two-dimensional, "sheet-like" nanostructures are commonly employed in biological systems such as cell membranes, and their unique properties have inspired interest in materials such as graphene. Now, Berkeley Lab scientists have made the largest two-dimensional polymer crystal self-assembled in water to date. This entirely new material mirrors the structural complexity of biological systems with the durable architecture needed for membranes or integration into functional devices.

These self-assembling sheets are made of peptoids, engineered polymers that can flex and fold like proteins while maintaining the robustness of manmade materials. Each sheet is just two molecules thick yet hundreds of square micrometers in area—akin to 'molecular paper' large enough to be visible to the naked eye. What's more, unlike a typical polymer, each building block in a peptoid nanosheet is encoded with structural 'marching orders'—suggesting its properties can be precisely tailored to an application. For example, these nanosheets could be used to control the flow of molecules, or serve as a platform for chemical and biological detection.

"Our findings bridge the gap between natural biopolymers and their synthetic counterparts, which is a fundamental problem in nanoscience," said Ronald Zuckermann, Director of the Biological Nanostructures Facility at the Molecular Foundry. "We can now translate fundamental sequence information from proteins to a non-natural polymer, which results in a robust synthetic nanomaterial with an atomically-defined structure."

The building blocks for peptoid polymers are cheap, readily available and generate a high yield of product, providing a huge advantage over other synthesis techniques. Zuckermann, instrumental in developing the Foundry's one-of-a-kind robotic synthesis capabilities, worked with his team of coauthors to form libraries of peptoid materials. After screening many candidates, the team landed upon the unique combination of polymer building blocks that spontaneously formed peptoid nanosheets in water.

Zuckermann and coauthor Christian Kisielowski reached another first by using the TEAM 0.5 microscope at the National Center for Electron Microscopy (NCEM) to observe individual polymer chains within the peptoid material, confirming the precise ordering of these chains into sheets and their unprecedented stability while being bombarded with electrons during imaging.

"The design of nature-inspired, functional polymers that can be assembled into membranes of large lateral dimensions marks a new chapter for materials synthesis with direct impact on Berkeley Lab's strategically relevant initiatives such as the Helios project or Carbon Cycle 2.0," said NCEM's Kisielowski. "The scientific possibilities that come with this achievement challenge our imagination, and will also help move electron microscopy toward direct imaging of soft materials."

"This new material is a remarkable example of molecular biomimicry on many levels, and will no doubt lead to many applications in device fabrication, nanoscale synthesis and imaging," Zuckermann added.

Original publication:

Free floating ultra-thin two-dimensional crystals from sequence-specific peptoid polymers"; Nature Materials

More about Lawrence Berkeley National Laboratory
  • News

    A semiconductor that can beat the heat

    A newly discovered collective rattling effect in a type of crystalline semiconductor blocks most heat transfer while preserving high electrical conductivity - a rare pairing that scientists say could reduce heat buildup in electronic devices and turbine engines, among other possible applica ... more

    Light-activated catalyst grabs CO2 to make ingredients for fuel

    Scientists have developed a light-activated material that can chemically convert carbon dioxide into carbon monoxide without generating unwanted byproducts. The achievement marks a significant step forward in developing technology that could help generate fuel and other energy-rich products ... more

    Making polymer chemistry 'click'

    A team of researchers has developed a faster and easier way to make sulfur-containing polymers that will lower the cost of large-scale production. The achievement opens the door to creating new products from this class of polymers while producing far less hazardous waste. The researchers' r ... more

  • Videos

    New mathematics captures intricate fluid interface dynamics

    A new mathematical framework developed at Berkeley Lab, published in the June 10 issue of Science Advances, allows researchers to capture fluid dynamics coupled to interface motion at unprecedented detail. The framework, called "interfacial gauge methods", developed by Robert Saye, a Luis W ... more

More about U.S. Department of Energy
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE