To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
 My watch list
 My saved searches
 My saved topics
 My newsletter
Classical electron radiusThe classical electron radius, also known as the Compton radius or the Thomson scattering length is based on a classical (i.e., nonquantum) relativistic model of the electron. Its value is calculated as Additional recommended knowledgewhere e and m are the electric charge and the mass of the electron, c is the speed of light, and ε_{0} is the permittivity of free space. Using classical electrostatics, the energy required to assemble a sphere of constant charge density, of radius r_{e} and charge e is
If the charge is on the surface the energy is
Ignoring the factors 3/5 or 1/2, if this is equated to the relativistic energy of the electron (E = mc^{2}) and solved for r_{e}, the above result is obtained. In simple terms, the classical electron radius is roughly the size the electron would need to have for its mass to be completely due to its electrostatic potential energy  not taking quantum mechanics into account. We now know that quantum mechanics, indeed quantum field theory, is needed to understand the behavior of electrons at such short distance scales, thus the classical electron radius is no longer regarded as the actual size of an electron. In fact, modern particle physics experiments indicate that the electron is a point particle, i.e. it has no size and its radius is zero. Still, the classical electron radius is used in modern classicallimit theories involving the electron, such as nonrelativistic Thomson scattering and the relativistic KleinNishina formula. Also, the classical electron radius is roughly the length scale at which renormalization becomes important in quantum electrodynamics. The classical electron radius is one of a trio of related units of length, the other two being the Bohr radius a_{0} and the Compton wavelength of the electron λ_{e}. The classical electron radius is built from the electron mass m_{e}, the speed of light c and the electron charge e. The Bohr radius is built from m_{e}, e and Planck's constant h. The Compton wavelength is built from m_{e}, h and c. Any one of these three lengths can be written in terms of any other using the fine structure constant α: Extrapolating from the initial equation, any mass m_{0} can be imagined to have an 'electromagnetic radius' similar to the electron's classical radius. where k_{C} is Coulomb's constant, α is the fine structure constant and is Planck's constant. Such a radius does not exist as a physical entity but it is sometimes useful in theoretical calculations. References

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Classical_electron_radius". A list of authors is available in Wikipedia. 