01-Aug-2018 - Max-Planck-Institut für Chemie

Surprise from the jungle soil

Soil microorganisms in the Amazon rainforest can affect atmospheric chemistry

The Amazon rainforest is the largest forest on earth. Its trees emit huge amounts of volatile substances that influence the chemical composition of the air. Some of these substances are the so-called sesquiterpenes, very reactive chemicals that can rapidly consume ozone. Until recently scientists studying the air composition in forests were primarily focused on trees and plants.

An international research team has now revealed, that the soil emissions of sesquiterpenes can be, under certain conditions, just as strong as those from the canopy. The molecules are produced by microorganisms in the soil. This discovery shows that the emissions from soil to air are an important component of the Amazonian ecosystem that had been previously overlooked.

“In previous studies, we found an ozone gradient in the Amazon forest with low levels near the soil. We thus suspected that we were missing an important source of reactive molecules removing the ozone,” said Jonathan Williams, group leader at the Max Planck Institute for Chemistry.

Sesquiterpenes react rapidly with ozone and can therefore impact the self-cleaning capacity of the atmosphere – a chemical process, whereby pollutants are removed from the air. The soil emissions are responsible for the depletion of about 50 percent of the ozone close to the forest floor which slows down the cleaning processes and can help pollinating insects find flowers via their scent.

The scientists first collected soil samples from several different sites in the Amazon jungle, most of them from the Amazon Tall Tower Observatory (ATTO), representing pristine Amazonian forest. Under controlled laboratory conditions, they then added water to simulate rain, and watched for volatile emissions as the soil dried out. As the drying progressed, conditions in the soil changed to suit different communities of soil microbes, each of which emitted different characteristic chemicals including sesquiterpenes.

"We found very similar patterns of sesquiterpene emissions and microbial activity in the soil," says Thomas Behrendt, soil scientist at the Max Planck Institute for Biogeochemistry in Jena. Based on the experimental results, Efstratios Bourtsoukidis, an atmospheric chemist at the Max Planck Institute for Chemistry, developed a precise numerical model to predict the fluxes of sesquiterpenes between the soil and the atmosphere. When simulating the daily fluxes from a very common tropical soil and the canopy over a period of two years, Bourtsoukidis observed that sesquiterpene emissions from the soils in the dry season were at certain times as strong as canopy emissions.

The study results show how important the connection between soil microbes and atmospheric chemistry is.

Facts, background information, dossiers
More about MPI für Chemie
  • News

    Pinpointing Pollutants from Space

    Nitrogen oxides (NO and NO2) are major contributors to air pollution. In order to accurately predict air quality and develop strategies to reduce pollution, precise emission data are needed. Daily satellite measurements can help to derive such data. The measuring instrument observes a speci ... more

    Prestigious prize for superconductivity researcher Mikhail Eremets

    The American Physical Society (APS) awards Mikhail Eremets the 2020 James C. McGroddy Prize for New Materials. As recently announced, the researcher from the Max Planck Institute for Chemistry receives the honor for his "For pioneering studies of hydrides, a new family of high Tc materials, ... more

    A chemical criterion for rating movies

    A measurable criterion now exists for determining the age rating of films. A group of scientists at the Max Planck Institute for Chemistry in Mainz has found that the concentration of isoprene in cinema air correlates with the cinema industry‘s voluntary classification of films. Evidently, ... more

More about MPI für Biogeochemie
  • News

    COVID-19 impacts on the Earth System

    COVID-19 immediately affects the health, economy and social well-being in our personal lives. Yet, the consequences on the entire Earth System, in particular the ones emerging from the widespread sheltering and lock-down measures, may be much more far-fetching and long-lasting. This has bee ... more

    Water as the underlying driver of the Earth’s carbon cycle

    Currently terrestrial ecosystems absorb about one quarter of the anthropogenic carbon dioxide emitted into the atmosphere. However, how this land carbon sink will develop in the future is uncertain and strongly depends on the responses of ecosystems to climate. New clues on how the land car ... more

    Extreme weather events fuel climate change

    When the carbon dioxide content of the atmosphere rises, the Earth not only heats up, but extreme weather events, such as lengthy droughts, heat waves, heavy rain and violent storms, may  become more frequent. Whether these extreme climate events result in the release of more CO2 from terre ... more

More about Max-Planck-Gesellschaft
  • News

    COVID-19 impacts on the Earth System

    COVID-19 immediately affects the health, economy and social well-being in our personal lives. Yet, the consequences on the entire Earth System, in particular the ones emerging from the widespread sheltering and lock-down measures, may be much more far-fetching and long-lasting. This has bee ... more

    Self-healing soft material outsmarts nature

    A soft material that heals itself instantaneously is now reality. A team of scientists at the Max Planck Institute for Intelligent Systems and at Pennsylvania State University tune the nanostructure of a new stretchable material in such a way that it now entirely recovers its structure and ... more

    Microscopic structures could further improve perovskite solar cells

    Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber fro ... more