My watch list
my.chemeurope.com  
Login  

Recycling carbon dioxide from the ocean

Floating power plants

11-Jun-2019

Pexels, pixabay.com, CC0

In the middle of the oceans, hydrogen (H2) is to be produced from solar energy (and water), which is then converted into methanol on site using CO2 extracted from the seawater (symbolic image).

Paper, tin cans, glass - the world recycles as much as possible. So why not declare the greenhouse gas carbon dioxide (CO2) a recycling product as well? Liquid fuels based on carbon will continue to play an important role in the future - despite international efforts to reduce them. So it seems sensible to recover the CO2 exhaust from the environment and use it again.

Researchers from ETH Zurich, PSI and the Universities of Zurich, Bern and the Norwegian University of Science and Technology (NTNU), together with a team from Empa, have calculated this idea and have shown that solar methanol islands could produce enough fuel in the long term to make all CO2 emitted from transportation sources neutral - worldwide. In the middle of the oceans, hydrogen (H2) is to be produced from solar energy (and water), which is then converted into methanol on site using CO2 extracted from the seawater. To this end, the researchers analyzed in detail a scenario that still seems purely hypothetical, but already provides the basis for a possible implementation.

From sun to electricity to hydrogen to methanol

The idea is based on solar islands, i.e. floating platforms equipped with photovoltaic systems. However, since solar power cannot be stored and transported from there, a solar power plant on the sea makes no sense. Liquid methanol (CH3OH) as well as gaseous methane (CH4) can be produced from carbon dioxide and hydrogen. The researchers' idea is that the raw materials could be obtained directly from the ocean or produced there.

There are already large-scale power-to-gas plants that convert hydrogen and CO2 into fuel - including the "move" demonstration platform on the Empa campus in Dübendorf (see box). The question therefore arises: why go to sea with it? Why not, as existing plants do, extract CO2 from the air? The answer is simple: the space required for a worldwide supply of fuel would be enormous. "An area of around 170,000 km2 would be needed to produce the annual demand for global freight transport," explains Andreas Borgschulte of Empa's Advanced Analytical Technologies lab. This could best be achieved by solar power systems at sea, a previously unused area that does not belong to anyone. CO2 can also be extracted from the air at sea, but an attractive - and still obvious - alternative would be to use the roughly 125 times higher CO2 concentration of seawater for the "carbon dioxide harvest".

More possibilities for methanol

In existing plants, the CO2 extracted from the atmosphere is mostly used to produce methane, which would also be possible on the solar islands. In the course of their considerations, however, the researchers decided to produce a liquid fuel because it is easier to transport. In addition, methanol can be used not only as a fuel, but also to manufacture other chemical products, such as precursors for polymer production. The possibilities for its use (and the profits that can be achieved with it) are therefore much greater.

However, such a "methanol island" has its price: the construction of such a chemical plant on the ocean would cost around 90 million US dollars. This would consist of around 70 photovoltaic islands with a diameter of around 100 m2 and a ship with the electrolysis and synthesis plants. This would result in a total area of around 550,000 m2. But a single cluster is far from sufficient to achieve a zero balance of CO2. A total of 170,000 such islands would be needed to recycle as much CO2 as is currently emitted - a utopian goal, but one worth pursuing. "Great ideas are needed – small solutions only supply small parts of the world, but not all of it," says Borgschulte.

More about Empa
  • News

    A molecular bridge further

    Electronics built from molecules could open up new possibilities in the miniaturization of circuits in the future. Empa researchers, together with partners from Switzerland, the Netherlands, Israel, and  the UK, succeeded in solving a crucial detail in the realization of such circuit elemen ... more

    Self healing robots that "feel pain"

    Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next genera ... more

    New record for flexible thin-film solar cells

    Flexible solar cell with unprecedented efficiency: The Empa Laboratory for Thin Films and Photovoltaics, headed by Ayodhya N. Tiwari, has broken its own record. The researchers improved the efficiency of energy conversion in CIGS solar cells on flexible polymer substrate to 20.8%. This is 0 ... more

  • Videos

    A water-based, rechargeable battery

    First step to produce a cheap aquous electrolyte for powerful rechargeable batteries: Seven grams of sodium FSI (precise name: sodium bis(fluorosulfonyl)imide) and one gram of water produce a clear saline solution with an electrochemical stability of up to 2.6 volts – twice as much as other ... more

More about Paul Scherrer Institut
More about ETH Zürich
  • News

    Glass from a 3D printer

    ETH researchers used a 3D printing process to produce complex and highly porous glass objects. The basis for this is a special resin that can be cured with UV light. Producing glass objects using 3D printing is not easy. Only a few groups of researchers around the world have attempted to pr ... more

    Observing changes in the chirality of molecules in real time

    Chiral molecules - compounds that are mirror images of each other - play an important role in biological processes and in chemical synthesis. Chemists at ETH Zurich have now succeeded for the first time in using ultrafast laser pulses to observe changes in chirality during a chemical reacti ... more

    Monitoring the corrosion of bioresorbable magnesium

    ETH researchers have recently been able to monitor the corrosion of bioresorbable magnesium alloys at the nanoscale over a time scale of a few seconds to many hours. This is an important step towards accurately predicting how fast implants are resorbed by the body to enable the development ... more

  • Videos

    Oxybromination of methane over vanadium phosphate

    ETH Zurich scientists have discovered a new catalyst that allows the easy conversion of natural gas constituents into precursors for the production of fuels or complex chemicals, such as polymers or pharmaceuticals. The new catalyst is extremely stable and results in fewer unwanted by-produ ... more

More about Universität Zürich
  • News

    Trust in Science and Research Remains High

    The Swiss population’s trust in science and research is high to very high. As the Science Barometer Switzerland 2019 study shows, people in Switzerland have a positive attitude towards science and are keen to receive information about research, with climate and energy considered the most im ... more

    Researchers Observe Slowest Atom Decay Ever Measured

    The XENON1T detector is mainly used to detect dark matter particles deep underground. But a research team led by Zurich physicists, among others, has now managed to observe an extremely rare process using the detector – the decay of the Xenon-124 atom, which has an enormously long half-life ... more

    Thermodynamic Magic Enables Cooling without Energy Consumption

    Physicists at the University of Zurich have developed an amazingly simple device that allows heat to flow temporarily from a cold to a warm object without an external power supply. Intriguingly, the process initially appears to contradict the fundamental laws of physics. If you put a teapo ... more

More about Universität Bern
More about Norwegian University of Science and Technology
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE